OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 15 — Jul. 26, 2004
  • pp: 3500–3508

Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

Guillaume Vienne, Yong Xu, Christian Jakobsen, Hans-Jürgen Deyerl, Jesper B. Jensen, Thorkild Sørensen, Theis P. Hansen, Yanyi Huang, Matthew Terrel, Reginald K. Lee, Niels A. Mortensen, Jes Broeng, Harald Simonsen, Anders Bjarklev, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 12, Issue 15, pp. 3500-3508 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1826 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.

© 2004 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Research Papers

Original Manuscript: May 20, 2004
Revised Manuscript: July 15, 2004
Published: July 26, 2004

Guillaume Vienne, Yong Xu, Christian Jakobsen, Hans-Jurgen Deyerl, Jesper Jensen, Thorkild Sorensen, Theis Hansen, Yanyi Huang, Matthew Terrel, Reginald Lee, Niels Mortensen, Jes Broeng, Harald Simonsen, Anders Bjarklev, and Amnon Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004)

Sort:  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  3. R. F. Cregan et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  4. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  5. Y. Fink et al., �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041 (1999). [CrossRef]
  6. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  7. C. M. Smith et al., �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  8. Y. Xu, and A. Yariv, �??Loss analysis of air-core photonic crystal fibers,�?? Opt. Lett. 28, 1885-1887 (2003). [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, �??Stimulated Raman scattering in hydrogenfilled hollow-core photonic crystal fibres,�?? Science 298, 399-402 (2002). [CrossRef] [PubMed]
  10. D. G. Ouzounov et al., �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  11. N. A. Mortensen, and M. D. Nielsen, �??Modeling of realistic cladding structures for air-core photonic bandgap fibers.�?? Opt. Lett. 29, 349-351 (2004). [CrossRef] [PubMed]
  12. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, �??Calculations of air-guided modes in photonic crystal fibers using the multipole method,�?? Opt. Express 9, 721-732 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-721.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-721</a> [CrossRef] [PubMed]
  13. S. G. Johnson et al., �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers.�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a> [CrossRef] [PubMed]
  14. A. Argyros, �??Guided modes and loss in Bragg fibres,�?? Opt. Express 10, 1411-1417 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1411.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1411</a> [CrossRef] [PubMed]
  15. Y. Xu, A. Yariv, J. G. Fleming, and S. Lin, �??Asymptotic analysis of silicon based Bragg fibers,�?? Opt. Express 11, 1039-1049 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039</a> [CrossRef] [PubMed]
  16. Y. Xu, R. K. Lee, and A. Yariv, �??Asymptotic analysis of Bragg fibers,�?? Opt. Lett. 25, 1756-1758 (2000). [CrossRef]
  17. A. Yariv, and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984).
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995).
  19. E. Chow et al., �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000). [CrossRef] [PubMed]
  20. M. Notomi et al., �??Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited