OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 3 — Feb. 9, 2004
  • pp: 458–467

Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities

Ph. Lalanne, S. Mias, and J. P. Hugonin  »View Author Affiliations

Optics Express, Vol. 12, Issue 3, pp. 458-467 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We identify two physical mechanisms which drastically increase the Q/V factor of photonic crystal microcavities. Both mechanisms rely on a fine tuning the geometry of the holes around the cavity defect. The first mechanism relies on engineering the mirrors in order to reduce the out-of-plane far field radiation. The second mechanism is less intuitive and relies on a pure electromagnetism effect based on transient fields at the subwavelength scale, namely a recycling of the mirror losses by radiation modes. The recycling mechanism enables the design of high-performance microresonators with moderate requirements on the mirror reflectivity. Once the geometry around the defect is optimised, both mechanisms are shown to strongly impact the Q and the Purcell factors of the microcavity.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources
(250.5300) Optoelectronics : Photonic integrated circuits
(260.5740) Physical optics : Resonance

ToC Category:
Research Papers

Original Manuscript: December 23, 2003
Revised Manuscript: January 29, 2004
Published: February 9, 2004

Ph. Lalanne, S. Mias, and J. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004)

Sort:  Journal  |  Reset  


  1. E.M. Purcell, �??Spontaneous emission probabilities at radio frequencies�??, Phys. Rev. 69, 681 (1946)
  2. H. Yokoyama and K. Ujihara, Spontaneous emission and laser oscillation in microcavities, (FL: CRC Press, 1995)
  3. O.J. Painter, A. Husain, A. Scherer, J.D. O'Brien, I. Kim, P.D. Dapkus,�?? Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,�?? J. Lightwave Technol. 17, 2082-2088 (1999). [CrossRef]
  4. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  5. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002). [CrossRef] [PubMed]
  6. A.S. Jugessur, P. Pottier, R.M. De La Rue, "One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides," Electron. Lett. 39, 367-369 (2003). [CrossRef]
  7. M. Palamaru and Ph. Lalanne, "Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-69 (2001). [CrossRef]
  8. Steven G. Johnson, Shanhui Fan, Attila Mekis and J. D. Joannopoulos, �??Multipole-cancellation mechanism for high- Q cavities in the absence of a complete photonic band gap,�?? Appl. Phys. Lett. 78, 3388-00 (2001). [CrossRef]
  9. J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, art. #016608 (2002).
  10. K. Srinivasan, O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670-684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a> [CrossRef] [PubMed]
  11. Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high Q�??s, small V�??s microcavities," IEEE J. Quantum Electron. 39, 1430-38 (2003) [CrossRef]
  12. J.P. Zhang, D.Y. Chu, S.L. Wu, W.G. Bi, R.C. Tiberio, R.M. Joseph, A. Taflove, C.W. Tu, S.T. Ho, �??Nanofabrication of 1-D Photonic Bandgap Structures Along Photonic Wire,�?? IEEE Photon. Technol. Lett. 8, 491 (1996). [CrossRef]
  13. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith and E.P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143 (1997). [CrossRef]
  14. D.J. Ripin, K.Y. Lim, G.S. Petrich, P.R. Villeneuve, S. Fan, E.R. Thoen, J.D. Joannopoulos, E.P. Ippen and L.A. Kolodziejski, �??Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides,�?? J. Appl. Phys. 87, 1578-80 (2000). [CrossRef]
  15. Ph. Lalanne and E. Silberstein, "Fourier-modal method applied to waveguide computational problems," Opt. Lett. 25, 1092-94 (2000). [CrossRef]
  16. E. Silberstein, Ph. Lalanne, J.P. Hugonin and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865 (2001). [CrossRef]
  17. J.P Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational. Phys. 114, 185 (1994).
  18. P. Benech and D. Khalil, "Rigorous spectral analysis of leaky structures: application to the prism coupling problem," Opt. Commun. 118, 220 (1995). [CrossRef]
  19. Y. Akahane, T. Asano, B-S Song and S. Noda, �??High-Q photonic nanocavity in two-dimensional photonic crystal,�?? Nature 425, 944-47 (2003).
  20. A.W. Snyder and J.D. Love, Optical Waveguide theory (Chapman and Hall, NY, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited