OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8069–8082

Tracking-FCS: Fluorescence correlation spectroscopy of individual particles

Andrew J. Berglund and Hideo Mabuchi  »View Author Affiliations

Optics Express, Vol. 13, Issue 20, pp. 8069-8082 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We exploit recent advances in single-particle tracking to perform fluorescence correlation spectroscopy on individual fluorescent particles, in contrast to traditional methods that build up statistics over a sequence of many measurements. By rapidly scanning the focus of an excitation laser in a circular pattern, demodulating the measured fluorescence, and feeding these results back to a piezoelectric translation stage, we track the Brownian motion of fluorescent polymer microspheres in aqueous solution in the plane transverse to the laser axis. We discuss the estimation of particle diffusion statistics from closed-loop position measurements, and we present a generalized theory of fluorescence correlation spectroscopy for the case that the motion of a single fluorescent particle is actively tracked by a time-dependent laser intensity. We model the motion of a tracked particle using Ornstein-Uhlenbeck statistics, using a general theory that contains a number of existing results as specific cases. We find good agreement between our theory and experimental results, and discuss possible future applications of these techniques to passive, single-shot, single-molecule fluorescence measurements with many orders of magnitude in time resolution.

© 2005 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Research Papers

Original Manuscript: August 9, 2005
Revised Manuscript: September 20, 2005
Published: October 3, 2005

Andrew Berglund and Hideo Mabuchi, "Tracking-FCS: Fluorescence correlation spectroscopy of individual particles," Opt. Express 13, 8069-8082 (2005)

Sort:  Journal  |  Reset  


  1. D. Magde, E. L. Elson, and W. W. Webb, �??Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy,�?? Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  2. E. L. Elson and D. Magde, �??Fluorescence correlation spectroscopy. 1. Conceptual basis and theory,�?? Biopolymers 13, 1-27 (1974). [CrossRef]
  3. D. Magde, E. L. Elson, and W. W. Webb, �??Fluorescence correlation spectroscopy. 2. Experimental realization,�?? Biopolymers 13, 29-61 (1974). [CrossRef] [PubMed]
  4. O. Krichevsky and G. Bonnett, �??Fluorescence correlation spectroscopy: the technique and its applications,�?? Rep. Prog. Phys. 65, 251-297 (2002). [CrossRef]
  5. S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, �??Biological and Chemical Applications of Fluorescence Correlation Spectroscopy: A Review,�?? Biochemistry 41, 697-705 (2002). [CrossRef] [PubMed]
  6. A. J. Berglund, A. C. Doherty, and H. Mabuchi, �??Photon statistics and dynamics of Fluorescence Resonance Energy Transfer,�?? Phys. Rev. Lett. 89, 068101 (2002). [CrossRef] [PubMed]
  7. H. D. Kim, G. U. Nienhaus, T. Ha, J. W. Orr, J. R. Williamson, and S. Chu, �??Mg2+-dependent conformational changes of RNA studied by fluorescence correlation and FRET on immobilized single molecules,�?? Proc. Natl. Acad. Sci. U.S.A. 99, 4284-4289 (2002). [CrossRef] [PubMed]
  8. K. C. Neuman and S. M. Block, �??Optical Trapping,�?? Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  9. M. J. Saxton and K. Jacobson, �??Single-particle tracking: applications to membrane dynamics,�?? Annu. Rev. Biophys. Biomolec. Struct. 26, 373-399 (1997). [CrossRef]
  10. A. E. Cohen and W. E. Moerner, �??Method for trapping and manipulating nanoscale objects in solution,�?? Appl. Phys. Lett. 86, 093109 (2005). [CrossRef]
  11. A. E. Cohen, �??Control of Nanoparticles with Arbitrary Two-Dimensional Force Fields,�?? Phys. Rev. Lett. 94, 118102 (2005). [CrossRef] [PubMed]
  12. T. Meyer and H. Schindler, �??Simultaneous Measurement of Aggregation and Diffusion of Molecules in Solutions and in Membranes,�?? Biophys. J. 54, 983-993 (1988). [CrossRef] [PubMed]
  13. T. Ha, D. S. Chemla, T. Enderle, and S.Weiss, �??Single molecule spectroscopy with automated positioning,�?? Appl. Phys. Lett. 70, 782-784 (1997). [CrossRef]
  14. J. Enderlein, �??Tracking of fluorescent molecules diffusing within membranes,�?? Appl. Phys. B 71, 773-777 (2000). [CrossRef]
  15. J. Enderlein, �??Positional and Temporal Accuracy of Single Molecule Tracking,�?? Sing. Mol. 1, 225-230 (2000). [CrossRef]
  16. R. S. Decca, C.-W. Lee, and S. R. Wassall, �??Single molecule tracking scheme using a near-field scanning optical microscope,�?? Rev. Sci. Instr. 73, 2675-2679 (2002). [CrossRef]
  17. V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, �??Scanning FCS, an novel method for three-dimensional particle tracking,�?? Biochem. Soc. Trans. 31, 997-1000 (2003). [CrossRef] [PubMed]
  18. A. J. Berglund and H. Mabuchi, �??Feedback controller design for tracking a single fluorescent molecule,�?? Appl. Phys. B 78, 653-659 (2004). [CrossRef]
  19. K. Kis-Petikova and E. Gratton, �??Distance measurement by circular scanning of the excitation beam in a two-photon microscope,�?? Microsc. Res. Tech. 63, 34-49 (2004). [CrossRef]
  20. V. Levi, Q. Ruan, and E. Gratton, �??3-D particle tracking in a two-photon microscope. Application to the study of molecular dynamics in cells,�?? Biophys. J. 88, 2919-2928 (2005). [CrossRef] [PubMed]
  21. M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, �??Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,�?? Biophys. J. 88, L33-L36 (2005). [CrossRef] [PubMed]
  22. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, �??Measuring fast dynamics in solutions and cells with a laser scanning microscope,�?? Biophys. J. 89, 1317-1327 (2005). [CrossRef] [PubMed]
  23. M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1986).
  24. G. Chirico, C. Fumagalli, and G. Baldini, �??Trapped Brownian Motion in Single- and Two-Photon Excitation Fluorescence Correlation Experiments,�?? J. Phys. Chem. B 106, 2508-2519 (2002). [CrossRef]
  25. C. W. Gardiner, Handook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd ed. (Springer-Verlag, 1985).
  26. N. G. Van Kampen, Stochastic processes in physics and chemistry (Elsevier Science Pub. Co., North-Holland, Amsterdam, 2001).
  27. A. Gennerich and D. Schild, �??Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used,�?? Biophys. J. 79, 3294-3306 (2000). [CrossRef] [PubMed]
  28. A. J. Berglund and H. Mabuchi, �??Performance bounds on single-particle tracking by fluorescence modulation,�?? in preparation (2005).
  29. X. Zhuang, L. E. Bartley, H. P. Babcock, R. Russell, T. Ha, D. Hershlag, and S. Chu, �??A Single-Molecule Study of RNA Catalysis and Folding,�?? Science 288, 2048-2051 (2000). [CrossRef] [PubMed]
  30. B. Okumus, T. J. Wilson, D. M. J. Lilley, and T. Ha, �??Vesicle Encapsulation Studies Reveal that Single Molecule Ribozyme Heterogeneities Are Intrinsinc,�?? Biophys. J. 87, 2798-2806 (2004). [CrossRef] [PubMed]
  31. E. Rhoades, E. Gussakovsky, and G. Haran, �??Watching proteins fold one molecule at a time,�?? Proc. Natl. Acad. Sci. U.S.A. 100, 3197-3202 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited