OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9666–9671

WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors

Silvia Diaz, Gorka Lasheras, and Manuel Lopez-Amo  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9666-9671 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel distributed fiber Raman amplified bus topology used for WDM transmission over 35 km of single-mode fiber by use of a multiwavelength Raman pump laser and eight Fiber Bragg gratings (FBGs). This topology reduces the number of addressing wavelengths needed at the head of the bus. Furthermore, by relocating the FBGs’ wavelengths of a first section, it is obtained power transparency at the end of the overall bus, without requiring any additional pump source. We show how the topology allows the received powers from the first section sensors to be equalized and partially amplify the overall network. We investigate how the performance depends on the launched pump power. Results obtained with this new configuration are compared with those achieved in a previously reported optically amplified bus topology.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4230) Fiber optics and optical communications : Multiplexing
(140.3550) Lasers and laser optics : Lasers, Raman

ToC Category:
Research Papers

Original Manuscript: September 26, 2005
Revised Manuscript: September 26, 2005
Published: November 28, 2005

Silvia Diaz, Gorka Lasheras, and Manuel Lopez-Amo, "WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors," Opt. Express 13, 9666-9671 (2005)

Sort:  Journal  |  Reset  


  1. R. Hernández-Lorenzo, M. López-Amo, and P. Urquhart, “Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors,” J. Lightwave Technol. 16, 485-489 (1998). [CrossRef]
  2. A. Dandridge, and C. Kirkendell, “Passive fiber optic sensor networks,” in Handbook of Optical Fiber Sensing Technology, J. M. López-Higuera, ed. (John Wiley, 2002), Chap. 21
  3. P. E. Green, Fiber Optic Networks, Englewood Cliffs, ed. (NJ: Prentice Hall, 1992), 357-369.
  4. L. T. Blair and S. A. Cassidy, “Wavelength division multiplexed sensor network using Bragg fiber reflection gratings,” Electron. Lett. 28, 1734-1735 (1992). [CrossRef]
  5. B. Vizoso, I. R. Matías, M. López-Amo, M. A. Muriel, and J. M. López-Higuera, “Design and application of double amplified recirculating ring structure for hybrid fiber buses,” Opt. Quantum Electron. 27, 847-857 (1995). [CrossRef]
  6. M. López-Amo, L. T. Blair, and P. Urquhart, “Wavelength-division multiplexed distributed optical fiber amplifier bus network for data and sensors,” Opt. Lett. 18, 1159-1161 (1993). [CrossRef] [PubMed]
  7. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12, 4372-4377 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4372>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4372</a>. [CrossRef] [PubMed]
  8. T. J. Ellingham, J. D. Ania-Castañón, S. K. Turitsyn, A. Pustovskikh, S. Kobtsev, and M. P. Fedoruk, “Dual-pump Raman amplification with increased flatness using modulation instability,” Opt. Express 13, 1079-1084 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1079>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1079</a>. [CrossRef] [PubMed]
  9. J. H. Lee, Y. M. Chang, Y. G. Han, et al., “Raman amplifier-based long-distance remote, strain and temperature sensing system using an Erbium-Doped Fiber and a Fiber Bragg Grating,” Opt. Express 12, 3515-3520 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3515>htt://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3515</a>. [CrossRef] [PubMed]
  10. Y. Emori, K. Tanaka, and S. Namiki, “100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 1355-1356 (1999). [CrossRef]
  11. S. Diaz, G. Lasheras, M. López-Amo, P. Urquhart, C. Jáuregui, and J. M. López-Higuera, “Wavelength-division- multiplexed distributed fiber raman amplifier bus network for sensors,” in Proc. 17th Int. Conf. Optical Fibre Sensors (OFS-17), Proc. SPIE 5855, 242-244 (2005). [CrossRef]
  12. S. Diaz, G. Lasheras, P. Urquhart, C. Jáuregui, J. M. López-Higuera, and M. López-Amo, "Improved distributed fiber raman amplifier bus network with wavelength division multiplexing for sensors,” (to be published).
  13. J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam ed. (Springer, 2004), Chap. 15. [CrossRef]
  14. L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam ed. (Springer, 2004), Chap. 6.
  15. P. B. Hansen, G. Jacobovitz-Veselka, L. Grüner-Nielsen, and A. J. Stentz, “Raman amplification for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34, 1136-1137 (1998). [CrossRef]
  16. Y. Emori, Y. Akasaka, and S. Namiki, “Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes,” Electron. Lett. 34, 2145-2146 (1998). [CrossRef]
  17. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, et al., “2.5 Tb/s (64 x 42.7 Gb/s) Transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. of OFC’02,(Anaheim, Calif., 2002), pp. FC2-1-FC2-3.
  18. B. Zhu, L. Leng, L. E. Nelson, et al., “3.2 Tb/s (80 x 42.7 Gb/s) Transmission over 20 x 100 km of non-zero dispersion fibre with simultaneous C + L-band dispersion compensation,” in Proc. of OFC’02, (Anaheim, Calif., 2002), pp. FC8-1-FC8-3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited