OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 3055–3067

Design of polarization gratings for broadband illumination

Hanna Lajunen, Jari Turunen, and Jani Tervo  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 3055-3067 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design of broadband diffractive elements is studied. It is shown that dielectric polarization gratings can be made to perform the same optical function over a broad band of wavelengths. Any design of paraxial-domain diffractive elements can be realized as such broadband elements that may, e.g., give constant diffraction efficiencies over the wavelength band while the field propagation after the elements remains wavelength-dependent. Furthermore, elements producing symmetric signals are shown to work with arbitrarily polarized or partially polarized incident planar broadband fields. The performance of the elements is illustrated by numerical examples and some practical issues related to their fabrication are discussed.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics
(230.1360) Optical devices : Beam splitters
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Research Papers

Original Manuscript: March 8, 2005
Revised Manuscript: April 5, 2005
Published: April 18, 2005

Hanna Lajunen, Jari Turunen, and Jani Tervo, "Design of polarization gratings for broadband illumination," Opt. Express 13, 3055-3067 (2005)

Sort:  Journal  |  Reset  


  1. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie�??Verlag, Berlin, 1997).
  2. H. Kikuta, Y. Ohira, and K. Iwata, �??Achromatic quarter-wave plates using the dispersion of form birefringence,�?? Appl. Opt. 36, 1566�??1572 (1997). [CrossRef] [PubMed]
  3. G. P. Nordin and P. C. Deguzman, �??Broadband form birefringent quarter-wave plate for the mid-infrared wave-length region,�?? Opt. Express 5, 163�??168 (1999). [CrossRef] [PubMed]
  4. D.-E. Yi, Y.-B. Yan, H.-T. Liu, Si-Lu, and G.-F. Jin, �??Broadband achromatic phase retarder by subwavelength grating,�?? Opt. Commun. 227, 49�??55 (2003). [CrossRef]
  5. Y. Kanamori, M. Sasaki, and K. Hane, �??Broadband antireflection gratings fabricated upon silicon substrates,�?? Opt. Lett. 24, 1422�??1424 (1999). [CrossRef]
  6. I. R. Hooper and J. R. Sambles, �??Broadband polarization-converting mirror for the visible region of the spectrum,�?? Opt. Lett. 27, 2152�??2154 (2002). [CrossRef]
  7. D. Kim and K. Burke, �??Design of a grating-based thin-film filter for broadband spectropolarimetry,�?? Appl. Opt. 31, 6321�??6326 (2003). [CrossRef]
  8. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, �??Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,�?? Opt. Lett. 29, 754�??756 (2004). [CrossRef] [PubMed]
  9. C. Sauvan, P. Lalanne, and M.-S. L. Lee, �??Broadband blazing with artificial dielectrics,�?? Opt. Lett. 29, 1593�??1595 (2004). [CrossRef] [PubMed]
  10. F. Gori, �??Measuring the Stokes parameters by means of a polarization grating,�?? Opt. Lett. 24, 584�??586 (1999). [CrossRef]
  11. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, �??Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,�?? Opt. Lett. 27, 1141�??1143 (2002). [CrossRef]
  12. J. Tervo and J. Turunen, �??Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,�?? Opt. Lett. 25, 785�??786 (2000). [CrossRef]
  13. J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, �??Design of space-variant diffractive polarization elements,�?? J. Opt. Soc. Am. A 20, 282�??289 (2003). [CrossRef]
  14. M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, �??Fourier array illuminators with 100% efficiency: analytical Jones-matrix construction,�?? J. Mod. Opt. 47, 2351�??2359 (2000).
  15. U. Levy, C.-H. Tsai, H.-C. Kim, and Y. Fainman, �??Design, fabrication and characterization of subwave-length computer-generated holograms for spot array generation,�?? Opt. Express 12, 5345�??5355 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5345.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5345.</a> [CrossRef] [PubMed]
  16. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, �??Polarization beam splitters using polarization diffraction gratings,�?? Opt. Lett. 26, 587�??589 (2001). [CrossRef]
  17. C. R. Fernández-Pousa, I. Moreno, J. A. Davis, and J. Adachi, �??Polarizing diffraction-grating triplicators,�?? Opt. Lett. 26, 1651�??1653 (2001). [CrossRef]
  18. F. Wyrowski, �??Upper bound of efficiency of diffractive phase elements,�?? Opt. Lett. 16, 1915�??1917 (1991). [CrossRef] [PubMed]
  19. H. Lajunen, J. Tervo, and J. Turunen, �??High-efficiency broadband diffractive elements based on polarization gratings,�?? Opt. Lett. 29, 803�??805 (2004). [CrossRef] [PubMed]
  20. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990), Section 3.4.
  21. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
  23. J. Tervo, T. Setälä, and A. T. Friberg, �??Theory of partially coherent electromagnetic fields in the space�??frequency domain,�?? J. Opt. Soc. Am. A 21, 2205�??2215 (2004). [CrossRef]
  24. G. Piquero, R. Borghi, and M. Santarsiero, �??Gaussian Schell-model beams propagating through polarization gratings,�?? J. Opt. Soc. Am. A 18, 1399�??1405 (2001). [CrossRef]
  25. G. Piquero, R. Borghi, A. Mondello and M. Santarsiero, �??Far field of beams generated by quasi-homogeneous sources passing through polarization gratings,�?? Opt. Commun. 195, 339�??350 (2001). [CrossRef]
  26. L. Mandel, �??Intensity fluctuations of partially polarized light,�?? Proc. Phys. Soc. 81, 1104�??1114 (1963). [CrossRef]
  27. J. C. Samson, �??Descriptions of the polarization states of vector processes: applications to ULF magnetic fields,�?? Geophys. J. R. Astr. Soc. 34, 403�??419 (1973). [CrossRef]
  28. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Cincotti, E. Di Fabrizio, and M. Gentili, �??Analytical derivation of optimum triplicator,�?? Opt. Commun. 157, 13�??17 (1998). [CrossRef]
  29. J. Turunen, �??Diffraction theory of microrelief gratings,�?? in Micro-Optics: Elements, Systems, and Applications, H.-P. Herzig, ed. (Taylor & Francis, London, 1997), Chapter 2.
  30. S. Astilean, Ph. Lalanne, P. Chavel, E. Cambril, and H. Launois, "High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm", Opt. Lett. 23, 552�??554 (1998). [CrossRef]
  31. S.-C. Chiao, B. G. Bovard, and H. A. Macleod, �??Optical-constant calculation over an extended spectral region: application to titanium dioxide film,�?? Appl. Opt. 34, 7355�??7360 (1995). [CrossRef] [PubMed]
  32. H. R. Philipp, �??Silicon Dioxide (SiO2) (Glass),�?? in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, 1985), pp. 749�??763.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited