OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 832–846

Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama  »View Author Affiliations

Optics Express, Vol. 14, Issue 2, pp. 832-846 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A practical technique by which a strongly confined and strongly enhanced optical near-field can be created on a metallic probe-tip is investigated. The technique uses an I-shaped aperture in a pyramidal structure formed on a thick metallic screen. The pyramidal structure divided into two sections by the I-shaped aperture and one of them is used as a tapered metallic probe. A surface plasmon polariton (SPP), which is excited and enhanced in the I-shaped aperture, propagates along the side surface of the aperture and pyramidal structure and illuminate the probe-tip. Scattering of optical waves by this structure is solved numerically using a volume integral equation by a generalized minimum residual method and fast Fourier transformation. It is shown that a strongly localized and strongly enhanced optical field is created at the tip of this metallic probe by SPPs. The fundamental characteristics of the localized and enhanced optical near-field on the probe-tip are investigated.

© 2006 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006)

Sort:  Journal  |  Reset  


  1. D. W. Pohl and D. Courjon, eds., Near-Field Optics (Kluwer Academic, Dordrecht; Boston, 1993).
  2. M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York, 1999). [CrossRef]
  3. S. Kawata, M. Ohtsu, and M. Irie, eds., Nano-Optics (Springer, Tokyo, 2002).
  4. J. M. Vigoureux, C. Girard, and D. Courjon, "General principles of scanning tunneling optical microscopy," Opt. Lett. 14, 1039-1041 (1989). [CrossRef] [PubMed]
  5. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  6. F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  7. O. J. F. Martin, and C. Girard, "Controlling and tuning strong optical field gradients at a local probe microscope tip apex," Appl. Phys. Lett. 70, 705-707 (1997). [CrossRef]
  8. L. Novotony, D. W. Pohl, and B. Hecht, "Scanning near-field optical probe with ultrasmall spot size," Opt. Lett. 20, 970-972 (1995). [CrossRef]
  9. L. Novotony, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  10. E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, and O. Rudow, "Transmission line probe based on a bow-tie antenna," J. Microsc. 202, 39-44 (2001). [CrossRef] [PubMed]
  11. O. Rudow, A. Vollkopf, M. Muller-Weigand, G. Georgiev and E. Oesterschulze, "Theoretical investigation of a coaxial probe concept for scanning near-field microscopy," Opt. Commun. 189, 187-192 (2001). [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  13. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, "Enhanced light confinement in a near-field optical probe with a triangular aperture," Phys. Rev. Lett. 89, 210801- 210804 (2002). [CrossRef] [PubMed]
  14. H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," Appl. Phys. Lett. 81, 5030-5032 (2002). [CrossRef]
  15. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  16. K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microsc. 210, 294-300 (2003). [CrossRef] [PubMed]
  17. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004). [CrossRef]
  18. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for a long narrow aperture in a pyramidal structure on a thick metallic screen," J. Opt. Soc. Am. A 21, 2344-2352 (2004). [CrossRef]
  19. K. Tanaka and M. Tanaka, "Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size," Opt. Comm. 233, 231-244 (2004). [CrossRef]
  20. K. Tanaka and M. Tanaka, "Simulation of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  21. K. Tanaka, M. Tanaka and T. Sugiyama, "Metallic tip-probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005). [CrossRef]
  22. P. Zwamborn and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans on MTT 40, 1757-1766 (1992). [CrossRef]
  23. R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods (SIAM, New York, 1994). [CrossRef]
  24. E. K. Miller, L. Medgyesi-Mitschnag and E. H. Newsman, ed., Computational electromagnetics frequency-domain method of moments (IEEE Press, New York, 1992).
  25. G. S. Smith, An introduction to classical electromagnetic radiation (Cambridge University New York, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited