Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Complex coupled-mode theory for optical waveguides

Open Access Open Access

Abstract

A coupled-mode formulation is described in which the radiation fields are represented in terms of discrete complex modes. The complex modes are obtained from a waveguide model facilitated by the combination of perfectly matched boundary (PML) and perfectly reflecting boundary (PRB) condition. By proper choice of the PML parameters, the guided modes of the structure remain unchanged, whereas the continuous radiation modes are discretized into orthogonal and normalizable complex quasi-leaky and PML modes. The complex coupled-mode formulation is identical to that for waveguides with loss and/or gain and can be solved by similar analytical and numerical techniques. By identifying the phase-matching conditions between the complex modes, the coupled mode formulation may be further simplified to yield analytical solutions. The complex coupled-mode theory is applied to Bragg grating in slab waveguides and validated by rigorous mode-matching method. It is for the first time that we can treat guided and radiation field in a unified and straightforward fashion without having to resort to cumbersome radiation modes. Highly accurate and insightful results are obtained with consideration of only the nearly phase-matched modes.

©2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Full vector complex coupled mode theory for tilted fiber gratings

Yu-Chun Lu, Wei-Ping Huang, and Shui-Sheng Jian
Opt. Express 18(2) 713-726 (2010)

New insight into quasi leaky mode approximations for unified coupled-mode analysis

Li Yang, Lin-Lin Xue, Yu-Chun Lu, and Wei-Ping Huang
Opt. Express 18(20) 20595-20609 (2010)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Ideal waveguide models
Fig. 2
Fig. 2 (a) Real and imaginary parts of the effective indices for the first twenty (20) modes (in descent order based on the values of the real part for the mode effective indices) supported in the waveguide for the different outer cladding indices. (b) A blow-up view for the portion of graph in (a) enclosed by the dashed circle.
Fig. 3
Fig. 3 Mode leakage loss for the quasi-leaky modes.
Fig. 4
Fig. 4 Mode field patterns for the three waveguide structures. (a) the fundamental guided mode; (b) the quasi-leaky cladding modes; (c) the PML modes.
Fig. 5
Fig. 5 Field confinement factor as a function of PML parameters.
Fig. 6
Fig. 6 Field confinement factors in core and cladding region as functions of computation window ( ns = 1.455).
Fig. 7
Fig. 7 Mode field overlap integrals for different modes. (a)Non-conjugate overlapping integral using Eqs. (13); (b) Conjugate overlapping integral using Eqs. (12). ( ns=1.45 .)
Fig. 8
Fig. 8 Volume Bragg grating structure based on slab waveguides
Fig. 9
Fig. 9 The transmission spectrum for Case A with lower outer cladding index ns = 1.0. (a) Phase matching wavelengths, corresponding coupling strengths, and the transmission spectrum predicted by the reduced CMT involving only two phase matching modes; (b) The transmission spectrum calculated by the reduced CMT (dash lines), the full CMT (dotted lines) and the rigorous MMM (solid lines).
Fig. 10
Fig. 10 The transmission spectrum for Case B with equal outer cladding index ns = 1.450. (a) Phase matching wavelengths, corresponding coupling strengths, and the transmission spectrum predicted by the full CMT involving from 2 up to 11 modes; (b) The transmission spectrum calculated by the full CMT (dotted lines) and the rigorous MMM (solid lines).
Fig. 12
Fig. 12 Transmission spectra with ns lager than ncl. (a) ns = 1.60; (b) ns = 1.90.
Fig. 11
Fig. 11 Transmission spectra with index of the outer cladding ns slightly larger than the index of the inner cladding ncl (ns = 1.455).

Equations (81)

Equations on this page are rendered with MathJax. Learn more.

t×enjγnen=jωμo[Λ]hn
t×hnjγnhn=+jωε[Λ]en
[Λ]=[Sy/Sx000Sx/Sy000SxSy]
Sx=κxjσxωε
Sy=κyjσyωε
σ=σmax(ρTPML)m
RPML=exp{2σmaxnεo/μo0TPML(ρTPML)mdρ}
S=κjλ4πnTPML[(m+1)ln(1RPML)](ρTPML)m
γn=βnjαn
t×enjγnen=jωμo[Λ]hn
t×hnjγnhn=+jωε[Λ]en
γn=γn
etn=+et,n
ezn=ez,n
htn=ht,n
hzn=+hz,n
(etm×htn)z^da=0
12(etn×htn)z^da=1
(etm×htn)z^da0
ε˜(x,y,z)=ε(x,y)+Δε(x,y,z)
×E(x,y,z)=jωμoH(x,y,z)
×H(x,y,z)=+jωε˜(x,y,z)H(x,y,z)
Et(x,y,z)=n=1[an(z)+bn(z)]etn(x,y)
Ht(x,y,z)=n=1[an(z)bn(z)]htn(x,y)
Ez(x,y,z)=n=1[an(z)bn(z)]εε˜ezn(x,y)
Hz(x,y,z)=n=1[an(z)+bn(z)]hzn(x,y)
Nmdamdz+jγmam=jn=1κmnanjn=1χmnbn
Nmdbmdzjγmbm=+jn=1κmnbn+jn=1χmnan
κmn=ωεo4A(n˜2n2)(etnetmn2n˜2eznezm)da
χmn=ωεo4A(n˜2n2)(etnetm+n2n˜2eznezm)da
Nm=12(etm×htm)z^da
κmn=κnm
χmn=χnm
an=Anexp(jγnz)
bn=Bnexp(+jγnz)
NmdAmdz=jn=1κmnAnexp[j(γnγm)z]jn=1χmnBnexp[+j(γn+γm)z]
NmdBmdz=+jn=1κmnBnexp[+j(γnγm)z]+jn=1χmnAnexp[j(γn+γm)z]
κmn=l=+Dmn(l)exp(jl2πΛz)
χmn=l=+Cmn(l)exp(jl2πΛz)
NmdAmdz=jn=1Anl=+Dmn(l)exp[j(γnγml2πΛ)z]jn=1Bnl=+Cmn(l)exp[+j(γn+γm+l2πΛ)z]
NmdBmdz=+jn=1Bnl=+Dmn(l)exp[+j(γnγm+l2πΛ)z]+jn=1Anl=+Cmn(l)exp[j(γn+γml2πΛ)z]
NmdAmdz=jn=1Bnl=+Cmn(l)exp[+j(γn+γm+l2πΛ)z]
NmdBmdz=+jn=1Anl=+Cmn(l)exp[j(γn+γml2πΛ)z]
NmdAmdz=jn=1Anl=+Dmn(l)exp[j(γnγml2πΛ)z]
NmdBmdz=+jn=1Bnl=+Dmn(l)exp[+j(γnγm+l2πΛ)z]
NmdAmdz=jn=1BnCmn(1)exp[+j(γn+γm2πΛ)z]
NmdBmdz=+jn=1AnCmn(+1)exp[j(γn+γm2πΛ)z]
NmdAmdz=jn=1AnDmn(1)exp[j(γnγm+2πΛ)z]
NmdBmdz=+jn=1BnDmn(+1)exp[+j(γnγm+2πΛ)z]
N1dA1dz=jC1n(1)Bnexp[+j(γn+β12πΛ)z]
NndBndz=+jCn1(+1)A1exp[j(γn+β12πΛ)z]
N1dA1dz=jD1n(1)Anexp[j(γnβ1+2πΛ)z]
NndAndz=jDn1(+1)A1exp[+j(γnβ1+2πΛ)z]
Δβn=12(γ1+γn2πΛ)
Δβn=12(γ1γn2πΛ)
(Δβn)=0
Λ=2π(γ1+γn)
Λ=2π(γ1γn)
N1dA1dz=jC1n(1)Bnexp[+j(2Δβn)z]
NndBndz=+jCn1(+1)A1exp[j(2Δβn)z]
N1dA1dz=jD1n(1)Anexp[j(2Δβn)z]
NndAndz=jDn1(+1)A1exp[+j(2Δβn)z]
a1(z)=a1(0)ΔβnsinhS(zL)jScoshS(zL)ΔβnsinhSLjScoshSLej(β1Δβn)z
bn(z)=a1(0)Cn1(+1)NnsinhS(zL)ΔβnsinhSL+jScoshSLej(γnΔβn)z
S=κn2(Δβn)2
κn=C1n(1)Cn1(+1)N1Nn
a1(z)=a1(0)jΔβsin(Qnz)+Qncos(Qnz)Qnej(β1Δβn)z
an(z)=jejΔβnzDn1(+1)Nnsin(Qnz)Qna1(0)ej(γn+Δβn)z
Qn=χn2+(Δβn)2
χn=Dn1(+1)D1n(1)NnN1
P(z)=12A[Et(x,y,z)×Ht(x,y,z)]z^da
P(z)=m=1n=1Mmn[aman*bmbn*]m=1n=1Nmn[ambn*bman*]
Mmn=14A(etm×htn*+etn*×htm)z^da
Nmn=14A(etm×htn*etn*×htm)z^da
P(z)m=1n=1Mmn[aman*bmbn*]
P(z)n=1[|an|2|bn|2]
P(0)=1R(λ)
R(λ)m=1n=1Mmnbm(0)bn*(0)
R(λ)n=1|bm(0)|2
P(L)=|a1(L)|2=T(λ)
T(λ)=1R(λ)
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.