OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 20 — Oct. 7, 2002
  • pp: 1048–1059

Electro-optical switching using coupled photonic crystal waveguides

Ahmed Sharkawy, Shouyuan Shi, Dennis W. Prather, and Richard A. Soref  »View Author Affiliations

Optics Express, Vol. 10, Issue 20, pp. 1048-1059 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an electro-optical switch implemented in coupled photonic crystal waveguides. The switch is proposed and analyzed using both the FDTD and PWM methods. The device is designed in a square lattice of silicon posts in air as well as in a hexagonal lattice of air holes in a silicon slab. The switching mechanism is a change in the conductance in the coupling region between the waveguides and hence modulating the coupling coefficient and eventually switching is achieved. Conductance is induced electrically by carrier injection or is induced optically by electron-hole pair generation. Low insertion loss and optical crosstalk in both the cross and bar switching states are predicted.

© 2002 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(230.0230) Optical devices : Optical devices
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators

ToC Category:
Research Papers

Original Manuscript: August 15, 2002
Revised Manuscript: September 20, 2002
Published: October 7, 2002

Ahmed Sharkawy, Shouyuan Shi, Dennis Prather, and Richard Soref, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express 10, 1048-1059 (2002)

Sort:  Journal  |  Reset  


  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering," Appl. Phys. Lett. 74, 1370-1372, (1999). [CrossRef]
  2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062, (1987). [CrossRef] [PubMed]
  3. S. John, "Strong Localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486, (1987). [CrossRef] [PubMed]
  4. D. W. Prather, A. Sharkawy and S. Shouyuan, "Photonic Crystals Design and Applications," in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner and W. A. Goddard III, Eds. (CRC Press, Boca Raton, FL. 2002).
  5. A. Adibi, R. K. Lee, Y. Xu, A. Yariv and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378, (2000). [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton, New Jersey, 1995).
  7. A. Sharkawy, S. Shi and D. W. Prather, "Multichannel Wavelength Division Multiplexing Using Photonic Crystals," Appl. Opt. 40, 2247-2252, (2001). [CrossRef]
  8. D. Pustai, A. Sharkawy, S. Shouyuan and D. W. Prather, "Tunable Photonic Crystal Microcavities," Appl. Opt. 41, 5574-5579, (2002). [CrossRef] [PubMed]
  9. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer and T. P. Pearsall, "Waveguiding in Planar Photonic Crystals," Appl. Phys. Lett. 77, 1937-1939, (2000). [CrossRef]
  10. M. Loncar, T. Doll, J. Vuckovic and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411, (2000). [CrossRef]
  11. D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen and D. Pustai, "High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide," Opt. Lett. 27, 1601-1603, (2002). [CrossRef]
  12. R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen and F. P. H. V. Beckum, "Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling BetweenWaveguides and Filters," Opt. Quantum Electron. 32, 947-961, (2000). [CrossRef]
  13. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre and U. Oseterle, "Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries," Appl. Phys. Lett. 77, 2813-2815, (2000). [CrossRef]
  14. M. Bayindir, B. Temmelkuran and E. Ozbay, "Propagation of Photons by Hopping: Awaveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals," Phys. Rev. B 61, R11855-R11858, (2000). [CrossRef]
  15. M. Bayindir and E. Ozbay, "Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal," Phys. Rev. B 62, R2247-R2250, (2000). [CrossRef]
  16. M. Loncar, J. Vuckovic and A. Scherer, "Methods for controlling positions of guided modes of photoniccrystal waveguides," J. Opt. Soc. Am. B 18, 1362-1368, (2001). [CrossRef]
  17. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little and H. A. Haus, "High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation" USA, 2000.
  18. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571, (1991). [CrossRef]
  19. D. Hermann, M. Frank and K. Busch, "Photonic Band Structure Computations," Opt. Express 8, 167-172, (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-167</a>. [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Boston, MA: Artech House, 2000).
  21. L. L. Liou and A. Crespo, "Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations," Microwave Opt. Technol. Lett. 26, 234-237, (2000). [CrossRef]
  22. S. Boscolo, M. Midiro and C. G. Someda, "Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides," IEEE J. Quantum Electron. 38, 47-53, (2002). [CrossRef]
  23. O. Painter, J. Vuckovic and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab," J. Opt. Soc. Am. B 16, 275-285, (1999). [CrossRef]
  24. A. Chutinan, M. Okano and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700, (2002). [CrossRef]
  25. A. Yariv and P. Yeh, Optical waves in Crystals (New York: John Wiley & Sons, 1984).
  26. M. L. Povinelli, S. G. Johnson, J. Fan and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 753131-753138, (2001). [CrossRef]
  27. S. G. Johnson, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758, (1999). [CrossRef]
  28. R. A. Soref and B. E. Little, "Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123, (1998). [CrossRef]
  29. M. Koshiba, "Wavelength Division Multiplexing and Demultiplexing with Photonic Crystal Waveguide couplers," J. Lightwave Technol. 19, 1970-1975, (2001). [CrossRef]
  30. S. M. Sze, Physics of Semiconductor Devices, 2nd ed (John Wiley & Sons Inc., 1981).
  31. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129, (1987). [CrossRef]
  32. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492, (2000). [CrossRef]
  33. S. Fan, S. G. Johnson and J. D. Joannopoulos, "Waveguide branches in photonic crystals," J. Opt. Soc. Am. B 18, 162-165, (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (172 KB)     
» Media 2: GIF (263 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited