OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 16 — Aug. 11, 2003
  • pp: 1918–1924

Temperature insensitive measurements of static displacements using a fiber Bragg grating

Yinian Zhu, Ping Shum, Chao Lu, M. B. Lacquet, P. L. Swart, A. A. Chtcherbakov, and S. J. Spammer  »View Author Affiliations


Optics Express, Vol. 11, Issue 16, pp. 1918-1924 (2003)
http://dx.doi.org/10.1364/OE.11.001918


View Full Text Article

Enhanced HTML    Acrobat PDF (95 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a chirped fiber Bragg grating transducer for the measurement of acceleration, in which a cantilever beam and fiber Bragg grating are used. The cantilever induces strain on the grating resulting in a Bragg grating wavelength modification that is subsequently detected. The output signal is insensitive to temperature variations and for a temperature change from -20 °C to 40 °C, the output signal fluctuated less than 5 % without any temperature compensation schemes. Because the accelerometer does not utilize the complex demodulation techniques it is potentially inexpensive. For the experimental system a linear output range of 8 g could be detected.

© 2003 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Research Papers

History
Original Manuscript: June 4, 2003
Revised Manuscript: July 28, 2003
Published: August 11, 2003

Citation
Yinian Zhu, Ping Shum, Chao Lu, M. Lacquet, P. Swart, A. Chtcherbakov, and S. Spammer, "Temperature insensitive measurements of static displacements using a fiber Bragg grating," Opt. Express 11, 1918-1924 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-16-1918


Sort:  Journal  |  Reset  

References

  1. K. O. Hill, F. Fujii, D. C. Johnson, and B. S. Kawasaki, �??Photosensitivity on optical fiber waveguides: application to reflection filter fabrication,�?? Appl. Physics Lett. 32, 647-649 (1978). [CrossRef]
  2. V. Mizrahi, �??Components and devices for optical communications based on UV-written-fiber phase gratings,�?? Optical Fiber Communications Conference, San Jose (1993).
  3. J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, �??Fiber dispersion compensation using a chirped in-fiber Bragg grating,�?? Electron. Lett. 30, 985-987 (1994). [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Tech. 15, 1442-1462 (1997). [CrossRef]
  5. S. M. Melle, T. Alavic, S. Karr, T. coroy, K. Lui, and R. M. Measures, �??A Bragg grating-tuned fiber laser strain sensor system,�?? IEEE Photon. Tech. Lett. 5, 516-518 (1992). [CrossRef]
  6. Y. J. Rao, �??In-fiber Bragg grating sensors,�?? Meas. Sci. Tech. 8, 355-375 (1997). [CrossRef]
  7. W. W. Morey, G. Meltz, and W. H. Glenn, �??Fiber optic Bragg grating sensors,�?? SPIE, 1169, 98-107 (1989).
  8. R. T. Jones, T. A. Berkoff, D. G. Dellemore, D. A. Early, J. S. Sirks, M. A. Putnam, E. J. Friebele, and A. D. Kersey, �??Cantilever plate deformation monitoring using wavelength division multiplexed fiber Bragg grating sensor,�?? SPIE, 2718, 258-268 (1996). [CrossRef]
  9. M. G. Xu, H. Geiger, and J. P. Dakin, �??Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing,�?? Electron. Lett. 32, 128-129 (1996). [CrossRef]
  10. T. A. Beroff and A. D. Kersey, �??Experimental demonstration of a fiber Bragg grating accelerometer,�?? IEEE Photon. Tech. Lett. 8, 1677-1679 (1996). [CrossRef]
  11. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, �??Flexural beam-based fiber Bragg grating accelerometers,�?? IEEE Photon. Tech. Lett. 10, 1605-1607 (1998). [CrossRef]
  12. G. Meltz, W. W. Morey, and W. H. Glenn, �??Formation of Bragg gratings in optical fiber by a transverse holographic method,�?? Opt. Lett. 14, 823-825 (1989). [CrossRef] [PubMed]
  13. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, �??Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,�?? Appl. Phys. Lett. 62, 1035-1037 (1993). [CrossRef]
  14. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999), Chap. 4.
  15. J. Dunphy, G. Meltz, F. Lamm, and W. Morey, �??Fiber-optic strain sensor multi-function, distributed optical fiber sensor for composite cure and response monitoring,�?? SPIE, 1370, 116-118 (1991).
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3
  17. K. O. Hill, F. Bilodeau, B. Molo, T. Kitagawa, S. Theriault, D. C. Johnson, and J. Albert, �??Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,�?? Opt. Lett. 19, 1314-1316 (1994). [CrossRef] [PubMed]
  18. K. H. Huebner, The finite Element Method for Engineer (John Wiley & Sons, 1975), Chap. 2.
  19. P. L. Fuhr, S. J. Spammer, and Y. Zhu, �??A novel signal demodulation technique for chirped Bragg grating strain sensors,�?? Smart Mater. Struct. 9, 85-94, (2000). [CrossRef]
  20. Y. Zhu, B. M. Lacquet, P. L. Swart, and S. J. Spammer, �??Realization of chirped fiber Bragg gratings by using differently tapered transducers and loading procedures,�?? Meas. Sci. Tech. 12, 922-926 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited