OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 20 — Oct. 6, 2003
  • pp: 2589–2596

Optical devices based on liquid crystal photonic bandgap fibres

Thomas Tanggaard Larsen, Anders Bjarklev, David Sparre Hermann, and Jes Broeng  »View Author Affiliations

Optics Express, Vol. 11, Issue 20, pp. 2589-2596 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (2695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic Crystal Fibers (PCFs) have appeared as a new class of optical waveguides, which have attracted large scientific and commercial interest during the last years. PCFs are microstructured waveguides, usually in silica, with a large number of air holes located in the cladding region of the fiber. The size and location of these air holes opens up for a large degree of design freedom within optical waveguide design. Further, the existence of air holes in the PCF gives access close to the fiber core and by introducing new materials into the air holes, a high interaction between light and hole material can be obtained, while maintaining the microstructure of the waveguide. In this paper, we describe what we call Liquid Crystal Photonic Bandgap Fibers, which are PCFs infiltrated with Liquid Crystals (LCs) in order to obtain increased fiber functionality. We describe a thermo-optic fiber switch with an extinction ratio of 60dB and tunable PBGs using thermo-optic tuning of the LC. These devices operate by the PBG effect and are therefore highly sensitive to the refractive index distributions in the holes.

© 2003 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

Original Manuscript: August 7, 2003
Revised Manuscript: September 29, 2003
Published: October 6, 2003

Thomas Larsen, Anders Bjarklev, David Hermann, and Jes Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003)

Sort:  Journal  |  Reset  


  1. D. B. Keck, R. D. Maurer, and P. C. Schultz, �??On the ultimate lower limit of attenuation in glass optical waveguides,�?? Appl. Phys. Lett. 22, 307-309 (1973). [CrossRef]
  2. R. Syms and J. Cozens, Optical Guided Waves and Devices, (McGraw-Hill Book Company England 1992).
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic bandgap guidance in optical fibers, Science 283, 1476-1478 (1998). [CrossRef]
  4. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
  6. P. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003). [CrossRef] [PubMed]
  7. K. P. Hansen, et al., �??Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55µm,�?? Optical Fiber Communication Conference (Optical Society, of America, Washington, D.C., 2002) PDFA9.
  8. R.F. Cregan et al., �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-153 (1999). [CrossRef] [PubMed]
  9. B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  10. J. Limpert, et al., �??High-power air-clad large-mode-area photonic crystal fiber laser,�??Opt. Express 11, 818 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a> [CrossRef] [PubMed]
  11. Jasapara, R. Bise, T. Her, and J. Nicholson, �??Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers,�?? Optical Fiber Communication Conference ThI3 (2003).
  12. P. S. Westbrook, et al., �??Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,�?? IEEE Photonics Technol. Lett. 12, (2000). [CrossRef]
  13. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices�??, Optics Express 9, 698-713 (2001). [CrossRef] [PubMed]
  14. E. Yablonovitch, �??Liquid versus photonics crystals,�?? Nature 401, 539-541 (1999) [CrossRef]
  15. K. Busch and S. John, �??Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum,�?? Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  16. C. Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, �??Lasing in a three-dimensional photonics crystal of the liquid crystal blue phase II,�?? Nature Materials 1, 111-113 (2002). [CrossRef]
  17. P. G. de Gennes and J. Prost, J. The Physics of liquid crystals, 2nd edition, (Clarendon Press, Oxford 1993).
  18. S. Chandrasekhar, Liquid crystals, (Cambridge University Press, 1977).
  19. P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, �??Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,�?? J. Appl. Phys. 76, (1994). [CrossRef]
  20. H. �??S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, �??Effect on chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,�?? Phys. Rev. E 54, 568-575, (1996). [CrossRef]
  21. S. K. Lo, L. M. Galarneau, D. J. Rogers, and S. R. Flom, �??Smectic Liquid Crystal Waveguides with cylindrical Geometry,�?? Mol. Cryst. Liq. Cryst. 201, 137-145 (1991). [CrossRef]
  22. J. T. Mang, K. Sakamoto, and S. Kumar, �??Smectic Layer Orientation in Confined Geometries,�?? Mol. Cryst. Liq. Cryst. 223, 133-142 (1992) [CrossRef]
  23. S. Kralj and S. Zumer, �??Smectic-A structures in submicrometer cylindrical cavities,�?? Phys. Rev. E, 54(2) 1610-1617 (1996). [CrossRef]
  24. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, �??Analysis of spectral characteristics of photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>. [CrossRef] [PubMed]
  25. J. B. Jensen, et al. �??Photonic Crystal Fibre based evanescent-wave sensor for detection of aqueous solutions,�?? Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2003).
  26. V. K. Gupta, J. J. Skaife, T. B. Dubrowsky, and N. L. Abbott, �??Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals,�?? Science 278, 2077-2080 (1998) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited