OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 23 — Nov. 17, 2003
  • pp: 3100–3109

Leakage loss and group velocity dispersion in air-core photonic bandgap fibers

Kunimasa Saitoh and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 11, Issue 23, pp. 3100-3109 (2003)
http://dx.doi.org/10.1364/OE.11.003100


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The wavelength dependence and the structural dependence of leakage loss and group velocity dispersion (GVD) in air-core photonic bandgap fibers (PBGFs) are numerically investigated by using a full-vector finite element method. It is shown that at least seventeen rings of arrays of air holes are required in the cladding region to reduce the leakage losses to a level of 0.1 dB/km in 1.55-µm wavelength range even if using large air holes of the diameter to pitch ratio of 0.9 and that the leakage losses in air-core PBGFs decrease drastically with increasing the hole diameter to pitch ratio. Moreover, it is shown that the waveguide GVD and dispersion slope of air-core PBGFs are much larger than those of conventional silica fibers and that the shape of air-core region greatly affects the leakage losses and the dispersion properties.

© 2003 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Research Papers

History
Original Manuscript: October 6, 2003
Revised Manuscript: November 4, 2003
Published: November 17, 2003

Citation
Kunimasa Saitoh and Masanori Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3100


Sort:  Journal  |  Reset  

References

  1. J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: A new class of optical waveguides,�?? Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  2. T.A. Birks, J.C. Knight, B.J. Mangan, and P.St.J. Russell, �??Photonic crystal fibers: An endless variety,�?? IEICE Trans. Electron. E84-C, 585-592 (2001).
  3. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  4. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961- 963 (1997). [CrossRef] [PubMed]
  5. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic band gap guidance in optical fiber,�?? Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  6. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  7. J. Broeng, S.E. Barkou, T. Sondergaard, and A. Bjarklev, �??Analysis of air-guiding photonic bandgap fibers,�?? Opt. Lett. 25, 96-98 (2000) [CrossRef]
  8. F. Benabid, J.C. Knight, G. Antonopoulos, and P.St.J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 399-402 (2002). [CrossRef] [PubMed]
  9. D.G. Ouzouno, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic bang-gap fibers,�?? Science 301, 1702-1704 (2003). [CrossRef]
  10. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  11. B.T. Kuhlmey, R.C. McPhedran, C.M. de Sterke, P.A. Robinson, G. Renversez, and D. Maystre, �??Microstructured optical fibers: where�??s the edge?,�?? Opt. Express 10, 1285-1290 (2002),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285</a> [CrossRef] [PubMed]
  12. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, �??Leakage properties of photonic crystal fibers,�?? Opt. Express 10, 1314-1319 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314</a>. [CrossRef] [PubMed]
  13. B. Kuhlmey, G. Renversez, and D. Maystre, �??Chromatic dispersion and losses of microstructured optical fibers,�?? Appl. Opt. 42, 634-639 (2003). [CrossRef] [PubMed]
  14. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, �??Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,�?? Opt. Express 11, 843-852 (2003),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a> [CrossRef] [PubMed]
  15. G. Renversez, B. Kuhlmey, and R. McPhedran, �??Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,�?? Opt. Lett. 28, 989-991 (2003). [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, �??Confinement losses in air-guiding photonic bandgap fibers,�?? IEEE Photon. Technol. Lett. 15, 236-238 (2003). [CrossRef]
  17. N.A. Issa, A. Argyros, M.A. van Eijkelenborg, and J. Zagari, �??Identifying hollow waveguide guidance in air-cored microstructured optical fibers,�?? Opt. Express 9, 996-1001 (2003),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-996"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-996</a> [CrossRef]
  18. S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engeness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, and Y. Fink, �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a> [CrossRef] [PubMed]
  19. S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066611 (2002) [CrossRef]
  20. M. Skorobogatiy, S.A. Jacobs, S.G. Johnson, and Y. Fink, �??Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,�?? Opt. Express 10, 1227-1243 (2002), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227</a> [CrossRef] [PubMed]
  21. T.D. Engeness, M. Ibanescu, S.G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, �??Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,�?? Opt. Express 11, 1175-1196 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175</a> [CrossRef] [PubMed]
  22. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  23. M. Koshiba and Y. Tsuji,�??Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,�?? J. Lightwave Technol. 18, 737-743 (2000). [CrossRef]
  24. M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 1313-1315 (2001) [CrossRef]
  25. J.A. Weat, N. Venkataraman, C.M. Smith, and M.T. Gallagher, �??Photonic crystal fibers,�?? Proc. European Conf. Opt. Commun., Th.A.2.2 (2001).
  26. G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited