OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 1 — Jan. 12, 2004
  • pp: 104–116

Antiguiding in microstructured optical fibers

M. Yan and P. Shum  »View Author Affiliations


Optics Express, Vol. 12, Issue 1, pp. 104-116 (2004)
http://dx.doi.org/10.1364/OPEX.12.000104


View Full Text Article

Enhanced HTML    Acrobat PDF (2228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Antiguiding, as opposed to positive index-contrast guiding (or index-guiding), in microstructured air-silica optical fibers is shown to have a significant influence on the fiber’s transmission property, especially when perturbations exist near the defect core. Antiguided modes are numerically analyzed in such fibers by treating the finite periodic air-silica composite (including the central defect) as the core and outer bulk silica region as the cladding. Higher-order modes, which can couple energy from the fundamental mode in the presence of waveguide irregularities, are predicted to be responsible for high leakage loss of realistic holey fibers. The modal property of an equivalent simple step-index antiguide model is also analyzed. Results show that approximation from a composite core waveguide to a simple step-index fiber always neglects some important modal characteristics.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

History
Original Manuscript: October 27, 2003
Revised Manuscript: December 14, 2003
Published: January 12, 2004

Citation
M. Yan and P. Shum, "Antiguiding in microstructured optical fibers," Opt. Express 12, 104-116 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-1-104


Sort:  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996). [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russel, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  3. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, �??Analysis of air-guiding photonic bandgap fibers,�?? Opt. Lett. 25, 96-98 (2000). [CrossRef]
  4. T. M. Monro, D. J. Richardson, �??Holey optical fibres: Fundamental properties and device applications,�?? C. R. Physique 4, 175-186 (2003) [CrossRef]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  6. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Holey Optical Fibers: An Efficient Modal Model,�?? J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  7. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés and M. V. Andrés, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999). [CrossRef]
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 322- 2330 (2002). [CrossRef]
  9. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, �??Multipole method for microstructured optical fibers. II. Implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  10. B. T. Kuhlmey, R. C. McPhedran and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. lett. 27, 1684-1686 (2002). [CrossRef]
  11. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen and K. P. Hansen, �??Modal cutoff and the V parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879-1881 (2003). [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, �??Grating resonances in airsilica microstructured optical fibers,�?? Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  14. C. Kerbage, B. J. Eggleton, P. Westbrook, and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113</a> [CrossRef] [PubMed]
  15. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698</a> [CrossRef] [PubMed]
  16. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  17. G. R. Hadley, �??Transparent boundary condition for the beam propagation method,�?? J. Quantum Electron 28, 363-370 (1992). [CrossRef]
  18. J. Chilwell and I. Hodgkinson, �??Thin films field-transfer matrix theory of planar multiplayer waveguides and reflection from prism-loaded waveguides,�?? J. Opt. Soc. Am. A 1, 742�??753 (1984). [CrossRef]
  19. P. R. McIsaac, �??�??Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,�??�?? IEEE Trans. Microwave Theory Tech. MTT-23, 421�??429 (1975). [CrossRef]
  20. M. D. Feit and J. A. Fleck, �??Computation of mode properties in optical fiber waveguides by a propagating beam method,�?? Appl. Opt. 19, 1154-1164 (1980). [CrossRef] [PubMed]
  21. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 155, 1277-1294 (1997). [CrossRef]
  22. L. Dong, L. Reekie, J. L Cruz, J. E. Caplen and D. N. Payne, �??Cladding mode suppression in fibre Bragg gratings using fibres with a depressed cladding,�?? ECOC, 1.53-56 (1996).
  23. D. Zhou and L. J. Mawst, �??High power single-mode antiresonant reflecting optical waveguide-type vertical cavity surface emitting lasers,�?? IEEE J. Quantum Electron. 38, 1599�??1606 (2002). [CrossRef]
  24. D. S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited