OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 1 — Jan. 12, 2004
  • pp: 30–41

Lattice array of molecular micromasers

Chris P. Search, Takahiko Miyakawa, and Pierre Meystre  »View Author Affiliations

Optics Express, Vol. 12, Issue 1, pp. 30-41 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the photoassociation of fermions trapped in a two-dimensional optical lattice into bosonic molecules, in the limit that intersite tunnelling is negligible. For the case of two fermions in different hyperfine states this process can be mapped into a generalized version of the Jaynes-Cummings Hamiltonian from quantum optics. We make use of this equivalence to show how to build a micromaser for the molecular field at each lattice site.

© 2004 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(270.3430) Quantum optics : Laser theory

ToC Category:
Focus Issue: Cold atomic gases in optical lattices

Original Manuscript: November 7, 2003
Revised Manuscript: December 22, 2003
Published: January 12, 2004

Chris Search, Takahiko Miyakawa, and Pierre Meystre, "Lattice array of molecular micromasers," Opt. Express 12, 30-41 (2004)

Sort:  Journal  |  Reset  


  1. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, "Quantum Logic Gates in Optical Lattices," Phys. Rev. Lett. 82, 1060-1063 (1999). [CrossRef]
  2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002). [CrossRef] [PubMed]
  3. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Cold Bosonic Atoms in Optical Lattices," Phys. Rev. Lett. 81, 3108-3111 (1998). [CrossRef]
  4. D. van Oosten, P. van der Straten, and H. T. C. Stoof, "Quantum Phases in an optical lattice," Phys. Rev. A 63, 053601 (2001). [CrossRef]
  5. P. S. Julienne, K. Burnett, Y. B. Band, and W. C. Stwalley, "Stimulated Raman molecule production in Bose-Einstein condensates," Phys. Rev. A 58, R797-R800 (1998). [CrossRef]
  6. D. J. Heinzen, R. Wynar, P. D. Drummond and K. V. Kheruntsyan, "Superchemistry: Dynamics of Coupled Atomic and Molecular Bose-Einstein Condensates," Phys. Rev. Lett. 84, 5029-5032 (2000). [CrossRef] [PubMed]
  7. E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, "Feshbach resonances in atomic Bose-Einstein condensate," Phys. Rep. 315, 199-230 (1999). [CrossRef]
  8. R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, "Molecules in a Bose-Einstein Condensate," Science 287, 1016-1019 (2000). [CrossRef] [PubMed]
  9. E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E.Wieman, "Atom-molecule coherence in a Bose-Einstein condensate," Nature 417, 529-533 (2002). [CrossRef] [PubMed]
  10. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, "Creation of ultracold molecules from a Fermi gase of atoms," Nature 424, 47-50 (2003); M. Greiner, C. A. Regal, and D. S. Jin, "Emergence of a molecular Bose-Einstein condensate from a Fermi gas," Nature 426, 537-540 (2003). [CrossRef] [PubMed]
  11. K. E. Strecker, G. B. Partridge, and R. G. Hulet, "Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas," Phys. Rev. Lett. 91, 080406 (2003). [CrossRef] [PubMed]
  12. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, and R. Grimm, "Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms," Phys. Rev. Lett. 91, 240402 (2003). [CrossRef] [PubMed]
  13. J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, "Production of Long-Lived Ultracold Li Molecules from a Fermi gas," Phys. Rev. Lett. 91, 240402 (2003). [CrossRef]
  14. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, "Observation of Bose-Einstein Condensation of Molecules," Phys. Rev. Lett. 91, 250401 (2003). [CrossRef]
  15. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Denschlag, and R. Grimm, "Bose-Einstein Condensation of Molecules," Science 302, 2101 (2003). [CrossRef] [PubMed]
  16. D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller, "Creation of a Molecular Condensate by Dynamically Melting a Mott Insulator," Phys. Rev. Lett. 89, 040402 (2002). [CrossRef] [PubMed]
  17. B. Damski, L. Santos, E. Tiemann, M. Lewenstein, S. Kotochigova, P. Julienne, and P. Zoller, "Creation of a Dipolar Superfluid in Optical Lattices," Phys. Rev. Lett. 90, 110401 (2003). [CrossRef] [PubMed]
  18. M. G. Moore and H. R. Sadeghpour, "Controlling two-species Mott-insulator phases in an optical lattice to form an array of dipolar molecules," Phys. Rev. A 67, 041603(R) (2003). [CrossRef]
  19. K. Mølmer, "Jaynes-Cummings Dynamics with a Matter Wave Oscillator," Phys. Rev. Lett. 90, 110403 (2003). [CrossRef] [PubMed]
  20. T. Esslinger and K. Mølmer, "Atoms and Molecules in Lattices: Bose-Einstein Condensates Built on a Shared Vacuum," Phys. Rev. Lett. 90, 160406 (2003). [CrossRef] [PubMed]
  21. K. Goral, M.Gajda, and K. Rzazewski, "Multimode Dynamics of a Coupled Ultracold Atomic-Molecular System," Phys. Rev. Lett. 86, 1397-1400 (2001). [CrossRef] [PubMed]
  22. C. P. Search, W. Zhang, and P. Meystre, "Molecular Micromaser," Phys. Rev. Lett. 91, 190401 (2003). [CrossRef] [PubMed]
  23. P. Filipowicz, J. Javanainen, and P. Meystre, "Theory of a microscopic maser," Phys. Rev. A 34, 3077-3087 (1986). [CrossRef] [PubMed]
  24. D. Meschede, H. Walther, and G. Müller, "One-Atom Maser," Phys. Rev. Lett. 54, 551-554 (1985). [CrossRef] [PubMed]
  25. G. Rempe, F. SchmidtKaler, and H.Walther, �??Observation of sub-Poissonian photon statistics in a micromaser,�?? Phys. Rev. Lett. 64, 2783-2786 (1990). [CrossRef] [PubMed]
  26. M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University Press, Cambridge, UK, 1997).
  27. A. M. Guzman, P. Meystre, and E. M. Wright, "Semiclassical theory of a micromaser," Phys. Rev. A 40, 2471-2478 (1989). [CrossRef] [PubMed]
  28. A. Albus, F. Illuminati, and J. Eisert, "Mixtures of bosonic and fermionic atoms in optical lattices," Phys. Rev. A 68, 023606 (2003). [CrossRef]
  29. P.W. Anderson, "Random-Phase Approximation in the Theory of Superconductivity," Phys. Rev. 112, 1900-1916 (1958). [CrossRef]
  30. C. P. Search, S. Pötting, W. Zhang, and P. Meystre, "Input-output theory for fermions in an atom cavity," Phys. Rev. A 66, 043616 (2002). [CrossRef]
  31. O. Mandel, M. Greiner, A. Widera, T. Rom, T. Hänsch, and I. Bloch, "Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice Potentials," Phys. Rev. Lett. 91, 010407 (2003). [CrossRef] [PubMed]
  32. P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, "Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level," Phys. Rev. Lett. 77, 2921-2924 (1996). [CrossRef] [PubMed]
  33. M. W. Jack, "Decoherence due to Three-Body Loss and its Effect on the State of a Bose-Einstein Condensate," Phys. Rev. Lett. 89, 140402 (2002). [CrossRef] [PubMed]
  34. P. Meystre, G. Rempe, and H. Walther, "Very-low temperature behaviour of a micromaser," Opt. Lett. 13, 1078 (1988). [CrossRef] [PubMed]
  35. P. Soldan, M. T. Cvita, J. M. Hutson, P. Honvault, and J. M. Launay, "Quantum Dynamics of Ultracold Na + Na2 Collisions," Phys. Rev. Lett. 89, 153201 (2002); N. Balakrishnan, R. C. Forrey, and A. Dalgarno, "Threshold phenomena in ultracold atom-molecule collisions," Chem. Phys. Lett. 280, 1-4 (1997). [CrossRef] [PubMed]
  36. D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, "Weakly bound dimers of fermionic atoms," condmat/ 0309010.
  37. O. Benson, G. Raithel, and H. Walther, "Quantum jumps of the micromaser field: Dynamic behavior close to phase transition points," Phys. Rev. Lett. 72 3506-3509 (1994). [CrossRef] [PubMed]
  38. B. P. Anderson and M. A. Kasevich, "Macroscopic Quantum Interference from Atomic Tunnel Arrays," Science 282, 1686-1689 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited