OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 15 — Jul. 26, 2004
  • pp: 3334–3340

Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA

Xu Wang and Kam Tai Chan  »View Author Affiliations

Optics Express, Vol. 12, Issue 15, pp. 3334-3340 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4230) Fiber optics and optical communications : Multiplexing
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Research Papers

Original Manuscript: June 4, 2004
Revised Manuscript: July 6, 2004
Published: July 26, 2004

Xu Wang and Kam Chan, "Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA," Opt. Express 12, 3334-3340 (2004)

Sort:  Journal  |  Reset  


  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986). [CrossRef]
  2. J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE. Trans. Commun. 37, 824-842 (1989). [CrossRef]
  3. D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997). [CrossRef]
  4. J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple-access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990). [CrossRef]
  5. K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1309-1319 (1998). [CrossRef]
  6. X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. (to be published).
  7. L. Tanc�?vski and I. Andonovic, �??Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,�?? IEEE J. Lightwave Tech. 14, 2636-2646 (1996). [CrossRef]
  8. X. Wang and K. T. Chan, �??A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,�?? IEEE J. Quantum Electron. 39, 83-90 (2003). [CrossRef]
  9. X. Wang, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Novel temporal/spectral coding technique based on fiber Bragg gratings for fiber optic CDMA application,�?? in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, (Optical Society of America, San Diego, 1999), pp. 341-343. [CrossRef] [PubMed]
  10. H. Ben Jaafar, S. LaRochelle, P. -Y. Cortes, and H. Fathallah, �??1.25Gbit/s transmission of optical FFHOCDMA signals over 80km with 16 users,�?? Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Technical Digest, (Optical Society of America, Anaheim, 2001), pp.TuV3-1 - TuV3-3.
  11. N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source,�?? Electron. Lett. 36, 815�??817 (2000). [CrossRef]
  12. X. Wang, K. L. Lee, C. Shu, and K. T. Chan, �??Multiwavelength self-seeded Fabry-Perot laser with subharmonic pulse-gating for two-dimensional fiber optic-CDMA,�?? IEEE Photon. Technol. Lett. 13, 1361-1363 (2000). [CrossRef]
  13. H. Ito, H. Yokoyama, S. Murata, and H. Inaba, �??Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser,�?? IEEE J. Quantum Electron. 17, 663-670 (1981). [CrossRef]
  14. P. Vasil�??ev, �??Ultrafast diode lasers-Fundamentals and application,�?? Boston: Artech House, 1995.
  15. X. Wang and K. T. Chan, �??Enhancement of transmission data rates in incoherent FO-CDMA systems,�?? in OptoElectronics Communication Conference OECC�??00 Tech. Dig., (Chiba, Japan, 2000), Paper 14A2-5, pp. 458�??459.
  16. S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, �??10 Gb/s�?2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder,�?? IEEE Photon. Technol. Lett., 15, 317-319 (2003). [CrossRef]
  17. X. Wang and K. T. Chan, �??The effect of grating position deviation and fiber dispersion in the fiber optic�??CDMA network with the FBG en/decoder for T/S coding,�?? Microwave and Optic Technol. Lett. 35, 16-19 (2002). [CrossRef]
  18. Takeshi Ito, S. Machida, K. Nawata, and Tetsuhiko Ikegami, �??Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,�?? IEEE J. Quantum Electron. 13, 574-579 (1977). [CrossRef]
  19. K. Ogawa and R. S. Vodhanel, �??Measurements of mode partition noise of laser diodes,�?? IEEE J. Quantum Electron. 18, 1090-1093 (1982). [CrossRef]
  20. K. Ogawa, �??Analysis of mode partition noise in laser transmission systems,�?? IEEE J. Quantum Electron. 18, 849-855 (1982). [CrossRef]
  21. N. H. Jensen, H. Oleson, and K. E. Stubkjaer, �??Partition noise in semiconductor lasers under CW and pulsed operation,�?? IEEE J. Quantum Electron. 23, 71-79 (1987). [CrossRef]
  22. G. J. Meslener, �??Mode-partition noise in microwave subcarrier transmission systems,�?? J. Lightwave Technol. 12, 118-126 (1994). [CrossRef]
  23. R. H. Wentworth, G. E. Bodeep, and T. E. Darcie, �??Laser mode partition noise in lightwave systems using dispersive optical fiber,�?? IEEE. J. Lightwave Technol. 10, 84 �??89 (1992). [CrossRef]
  24. B. R. Clark, �??Mode partition noise induced by optical filtering,�?? Electron. Lett. 25, 211-212 (1989). [CrossRef]
  25. R. S. Fyath and J. J. O�??Reilly, �??Performance of lightwave systems incorporating multilongitudinal mode laser and optically preamplified receiver combinations,�?? Optoelectronics IEE Proc. 137, 230-240 (1990). [CrossRef]
  26. R. A. Griffin, D. A. Jackson, and D. D. Sampson, �??Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,�?? IEEE J. Select. Topics in Quantum Electron. 1, 569 �??576 (1995). [CrossRef]
  27. A. J. Mendez, J. L. Lambert, J. -M. Morookian, and R. M. Gagliardi, �??Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput,�?? IEEE Photon. Technol. Lett. 6, 1146-1149 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited