OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 4072–4079

Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides

Maziar P. Nezhad, Kevin Tetz, and Yeshaiahu Fainman  »View Author Affiliations

Optics Express, Vol. 12, Issue 17, pp. 4072-4079 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of surface plasmon polaritons on metallic waveguides adjacent to a gain medium is considered. It is shown that the presence of the gain medium can compensate for the absorption losses in the metal. The conditions for existence of a surface plasmon polariton and its lossless propagation and wavefront behavior are derived analytically for a single infinite metal-gain boundary. In addition, the cases of thin slab and stripe geometries are also investigated using finite element simulations. The effect of a finite gain layer and its distance from the SPP waveguide is also investigated. The calculated gain requirements suggest that lossless gain-assisted surface plasmon polariton propagation can be achieved in practice for infrared wavelengths.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

Original Manuscript: June 18, 2004
Revised Manuscript: August 13, 2004
Published: August 23, 2004

Maziar Nezhad, Kevin Tetz, and Yeshaiahu Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004)

Sort:  Journal  |  Reset  


  1. C. Vassalo, Optical waveguide concepts (Elsevier, 1991).
  2. F. A. Fernández and Y. Lu, Microwave and optical waveguide analysis by the finite element method, (Wiley, 1996).
  3. W. L. Barnes, A. Dereux and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824�?? 830 (2003). [CrossRef] [PubMed]
  4. G. A. Plotz, H. J. Simon, J. M. Tucciarone, �??Enhanced total reflection with surface plasmons,�?? JOSA 69, 419-421 (1979). [CrossRef]
  5. B. Ya Kogan, V. M. Volkov and S. A. Lebedev, �??Superluminescence and generation of stimulated radiation under internal-reflection conditions,�?? JETP Lett. 16, 100 (1972).
  6. A. N. Sudarkin and P. A. Demkovich, �??Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,�?? Sov. Phys.Tech. Phys. 34, 764-766 (1989).
  7. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer Verlag, 1988).
  8. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, �??Longwavelength (λ-�?? 8-11.5 μm) semiconductor lasers with waveguides based on surface plasmons,�?? 23, 1366 (1998). [CrossRef]
  9. E. D. Palik, Handbook of optical constants of solids vol. I (Academic Press, 1985).
  10. T. Saitoh and T Mukai, �??1.5 μm GaInAsP traveling-wave semiconductor laser amplifier,�?? IEEE J. Quant. Elec. QE-23, 1010-1020 (1987). [CrossRef]
  11. N. Hatori, M. Sugawara, K. Mukai, Y. Nakata and H. Ishikawa, �??Room-temperature gain and differential gain characteristics of self-assembled InGaAs/GaAs quantum dots for 1.1-1.3 m semiconductor lasers,�?? Appl. Phys. Lett. 77, 773-775 (2000). [CrossRef]
  12. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian and N. F. Borrelli, �??Room-temperature gain at 1.3 μm in PbS-doped glasses,�?? Appl. Phys. Lett. 75, 3060-3062 (1999). [CrossRef]
  13. P. Ramvall, Y. Aoyagi, A. Kuramata, P. Hacke, K. Domen and K. Horino, �??Doping-dependent optical gain in GaN,�?? Appl. Phys. Lett. 76, 2994-2996 (2000). [CrossRef]
  14. P. Berini, �??Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484 (2000). [CrossRef]
  15. L.A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley , 1995).
  16. N. A. Pikhtin, S. O. Sliptchenko, Z. N. Sokolova and I. S. Tarasov, �??Analysis of threshold current density and optical gain in InGaAsP quantum well lasers,�?? Semiconductors 36, 344-353 (2002). [CrossRef]
  17. S. Y. Hu, D. B. Young, S. W. Corzine, A.C. Gossard, L. A. Coldren, �??High-efficiency and low-threshold InGaAs/AlGaAs quantum-well lasers,�?? J. of Appl. Physics 76 , 3932-3934 (1994). [CrossRef]
  18. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A.E. Zhukov, M. V. Maximov, P.S. Kopev and Z. I. Alferov, �??Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,�?? Appl. Phys. Lett. 69, 1226-1228 (1996). [CrossRef]
  19. J. R. Sambles, �??Grain-boundary scattering and surface-plasmon attenuation in noble-metal films,�?? Solid State Comm. 49, 343-345 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited