OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 2 — Jan. 26, 2004
  • pp: 234–248

Comprehensive FDTD modelling of photonic crystal waveguide components

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong  »View Author Affiliations

Optics Express, Vol. 12, Issue 2, pp. 234-248 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (973 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission spectra for various photonic crystal waveguides. It is found that within the experimental fabrication tolerances the calculations correctly predict the measured transmission levels and other major transmission features.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(230.5440) Optical devices : Polarization-selective devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Research Papers

Original Manuscript: October 30, 2003
Revised Manuscript: January 8, 2004
Published: January 26, 2004

A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004)

Sort:  Journal  |  Reset  


  1. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. V. P. Bykov, Radiation of atom in a resonant environment, (World Scientific, Singapore, 1993).
  4. A. Taflove and S. C. Hagness, Computational electrodynamics: The finite-difference time-domain method, (Artech House, Boston, 2000).
  5. S. Fan, �??Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,�?? Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  6. Y. Sugimoto et al., �??Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys. 91, 922-929 (2002). [CrossRef]
  7. K. Yamada et al., �??Improved line-defect structures for photonic-crystal waveguides with high group velocity,�?? Opt. Commun. 198, 395-402 (2001). [CrossRef]
  8. M. Loncar et al., �??Methods for controlling positions of guided modes of photonic-crystal waveguides,�?? J. Opt. Soc. Am. B 9, 1362-1368 (2001). [CrossRef]
  9. M. Agio and C. M. Soukoulis, �??Ministop bands in single-defect photonic crystal waveguides,�?? Phys. Rev. E 64, 055603-055606 (2001). [CrossRef]
  10. T. Ochiai and K. Sakoda, �??Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,�?? Phys. Rev. B 63, 125107-125113 (2001). [CrossRef]
  11. E. Chow et al., �??Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 µm wavelengths,�?? Opt. Lett. 26, 286-288 (2001). [CrossRef]
  12. A. Chutinan and S. Noda, �??Waveguide and waveguide bends in two-dimensional photonic crystal slabs,�?? Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  13. A. Adibi et al., �??Properties of the slab modes in photonic crystal optical waveguides,�?? J. Lightwave Technol. 18, 1554-1564 (2000). [CrossRef]
  14. M. Qiu and S. He, �??Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions,�?? Phys. Rev. B 61, 12871-12876 (2000). [CrossRef]
  15. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??AlGaAs-based two-dimensional photonic crystal slab with defect waveguides for planar lightwave circuit applications,�?? IEEE J. Quantum Electron. 38, 760-769 (2002). [CrossRef]
  16. H. Benisty et al., �??Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals,�?? IEEE J. Quantum Electron. 38, 770-785 (2002). [CrossRef]
  17. R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, �??Optical study of two-dimensional InP-based photonic crystals by internal light source technique,�?? IEEE J. Quantum Electron. 38, 786-799 (2002). [CrossRef]
  18. A. J. Ward and J. B. Pendry, �??A program for calculating photonic band structures, Green�??s functions and transmission/ reflection coefficients using a non-orthogonal FDTD method,�?? Comput. Phys. Commun. 128, 590-621 (2000). [CrossRef]
  19. A. J. Ward and J. B. Pendry, �??Refraction and geometry in Maxwell�??s equation,�?? J. Mod. Opt. 43, 773-793 (1996). [CrossRef]
  20. S. D. Gedney, �??An anisotropic perfectly matched layer �?? absorbing medium for the truncation of FDTD lattices,�?? IEEE Trans. Ant. Prop. 44, 1630-1639 (1996). [CrossRef]
  21. F. L. Teixeira and W. C. Chew, �??On causality and dynamic stability of perfectly matched layers for FDTD simulations,�?? IEEE Trans. Microw. Theory Technol. 47, 775-785 (1999). [CrossRef]
  22. W. C. Chew and W. H. Weedon, �??A 3-D perfectly matched medium from modified Maxwell�??s equations with stretched coordinates,�?? Microw. Opt. Technol. Lett. 7, 599-604 (1994). [CrossRef]
  23. P. G. Petropoulos, L. Zhao and A. C. Cangellaris, �??A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell�??s equations with high-order staggered finite difference schemes,�?? J. Comput. Phys. 139, 184-208 (1998). [CrossRef]
  24. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  25. P. I. Borel et al., �??Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light,�?? Opt. Express 11, 1757-1762 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757</a> [CrossRef] [PubMed]
  26. H. Benisty et al., �??Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,�?? Appl. Phys. Lett. 76, 532-534 (2000). [CrossRef]
  27. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic crystals: Molding the flow of light, (Princeton University Press, 1995).
  28. T. Søndergaard, J. Arentoft and M. Kristensen, �??Theoretical analysis of finite-height semiconductor-on-insulator based planar photonic crystal waveguides,�?? J. Lightwave Technol. 20, 1619-1626 (2002). [CrossRef]
  29. M. Loncar et al., �??Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides,�?? Appl. Phys. Lett. 80, 1689-1691 (2000). [CrossRef]
  30. M. Thorhauge, L. H. Frandsen and P. I. Borel, �??Efficient Photonic Crystal Directional Couplers,�?? Opt. Lett. 28, 1525-1527 (2003). [CrossRef] [PubMed]
  31. S. J. McMab and Y. A. Vlasov, �??SOI 2D photonic crystals for microphotonic integrated circuits,�?? Holey fibers and photonic crystals, (Digest of IEEE-LEOS Summer Topical Meetings, Vancouver, 2003) pp. 79-80.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited