OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5243–5257

Wavelength modulation imaging with tunable mid-infrared semiconductor laser: spectroscopic and geometrical effects

Yi Wang, Chuan Peng, HuanLin Zhang, and Han Q. Le  »View Author Affiliations

Optics Express, Vol. 12, Issue 21, pp. 5243-5257 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (3352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength modulation imaging (WMI) is capable of determining both spectroscopic and geometrical properties of a target, but the latter is often ignored in spectroscopic studies. This work theoretically and experimentally demonstrates the importance of both in WMI applications. Experiments were performed with an all-digital signal processing approach employing a tunable mid-infrared laser capable of digital wavelength modulation. All three orders of wavelength-derivative images, 0th, 1st, and 2nd are generated simultaneously. Higher order images can reveal or enhance features that are not evident in the 0th order. An example shows a synthetic imaging approach that combines the 2nd order WMI of CO gas with a focal plane array image to allow chemical visualization with minimal background clutter. In another example, fine geometrical features were revealed for a target that has little intrinsic spectroscopic signatures.

© 2004 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.3080) Imaging systems : Infrared imaging
(110.4190) Imaging systems : Multiple imaging
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Research Papers

Original Manuscript: July 15, 2004
Revised Manuscript: October 11, 2004
Published: October 18, 2004

Yi Wang, Chuan Peng, HuanLin Zhang, and Han Le, "Wavelength modulation imaging with tunable mid-infrared semiconductor laser: spectroscopic and geometrical effects," Opt. Express 12, 5243-5257 (2004)

Sort:  Journal  |  Reset  


  1. See for example, R. Grisar, H. Boettner, M. Tacke, and G. Restelli (Eds.), �??Monitoring of gaseous pollutants by tunable diode lasers,�?? in Proceedings of the International Symposium, Freiburg, Germany, 1991, Kluwer Academic Publishers, Dordrecht, The Netherlands (1992).
  2. See for example, P. Werle, �??A review of recent advances in semiconductor laser based gas monitors,�?? Spectrochim. Acta Part A 54, 197-236 (1998). [CrossRef]
  3. D. E. Cooper, J. E. van der Laan, R. E. Warren, �??Diode-laser-based lidars: the next generation,�?? in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, Proc. SPIE 3758, 142-151 (1999). [CrossRef]
  4. D. J. Kane, J. A. Siver, �??Real time quantitative 3-D imaging of diffusion flame species,�?? in NASA Conference Publication 10194, 281-286 (1997).
  5. D. S. Bomse, A. C. Stanton, and J. A. Silver, "Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser," Appl. Opt. 31, 718-731 (1992). [CrossRef] [PubMed]
  6. C. Peng, H.L. Zhang, H.Q. Le, �??Mid-infrared external-cavity two-segment quantum-cascade laser,�?? Appl. Phys. Lett. 83, 4098-4100 (2003). [CrossRef]
  7. P. E. Powers, T.J. Kulp, and R. Kennedy, �??Demonstration of differential backscatter absorption gas imaging,�?? Appl. Opt. 39, 1440-1448 (2000). [CrossRef]
  8. T. G. McRae and T. J. Kulp, �??Backscatter absorption gas imaging: a new technique for gas visualization,�?? Appl. Opt. 32, 4037�??4050 (1993). [PubMed]
  9. T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, �??Development of a pulsed backscatter-absorption gas-imaging and its application to the visualization of natural gas leaks,�?? Appl. Opt. 37, 3912�??3922 (1998). [CrossRef]
  10. See for example, E. Wolf, �??Principles and development of diffraction tomography,�?? in Trends in Optics, A. Consortini (Ed.), 83�??110 (Academic, San Diego, Calif., 1996).
  11. M. Born and E. Wolf, Principles of optics, 7th ed., (Cambridge University Press, 1999), Chap. 13.
  12. Ibid, Chap. 11; and A. Sommerfeld, �??Mathematische theorie der diffraction,�?? Math. Ann. 47, 317-374 (1896). [CrossRef]
  13. Ibid, Chap. 14, pp. 785-789.
  14. Anatoliy A. Kosterev, Frank K. Tittel, �??Chemical sensors based on quantum cascade lasers,�?? IEEE J. of Quantum Electronics 38, 582-591 (2002). [CrossRef]
  15. See for example, Application of tunable diode and other infrared sources for atmospheric studies and industrial processing monitoring II, Proc. SPIE 3758, A. Fried (ed.) (1999).
  16. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, �??Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,�?? Opt. Lett. 23, 219-221 (1998). [CrossRef]
  17. D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, �??Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers,�?? Opt. Lett. 26, 887-889 (2001). [CrossRef]
  18. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, �??In situ combustion measurements of CO with diode-Laser absorption near 2.3 microns,�?? Appl. Opt. 39, 5579�??5589 (2000). [CrossRef]
  19. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, �??Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers�??, Appl. Opt. 40, 812-820 (2001). [CrossRef]
  20. P. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, �??Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,�?? Opt. Lett. 25, 666�??668 (2000). [CrossRef]
  21. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, �??High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,�?? Opt. Lett. 23, 1396-1398 (1998). [CrossRef]
  22. C. Peng, G. P. Luo, H. Q. Le, �??Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers,�?? Appl. Opt. 42, 4877-4882 (2003). [CrossRef] [PubMed]
  23. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, H. Lee, W. Y. Hwang, B. Ishang, and J. Zheng, �??Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,�?? IEEE J. of Quantum Electron. 38, 486-494 (2002). [CrossRef]
  24. A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, �??High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers,�?? Appl. Phys. Lett. 84, 314-316 (2004). [CrossRef]
  25. M. Born and E. Wolf, Principles of optics, 7th ed., (Cambridge University Press, 1999), pp. 64-70.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited