OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 22 — Nov. 1, 2004
  • pp: 5356–5361

Small, low-loss heterogeneous photonic bandedge laser

Soon-Hong Kwon, Se-Heon Kim, Sun-Kyung Kim, Yong-Hee Lee, and Sung-Bock Kim  »View Author Affiliations

Optics Express, Vol. 12, Issue 22, pp. 5356-5361 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated the operation of a new type of heterogeneous photonic crystal laser, a five-lattice-constant large photonic bandedge laser assisted by a photonic bandgap, in a triangular lattice at room temperature. When the air hole radius of the surrounding photonic crystal (PC) is slightly smaller than that of the bandedge mode region, most in-plane losses of the first K point bandedge mode in the central region are suppressed and the quality factor of the mode is greatly enhanced to 50000. We identified the photonic bandgap-bandedge (PBG-BE) lasing modes through the spectral position, near-field pattern, and the state of polarization, which correspond well with the results of the three-dimensional (3D) finite-difference time-domain (FDTD) method computation. The two-dimensional (2D) feedback mechanism of the first K bandedge was verified through the Fourier analysis. Low threshold incident peak pump power of ~ 0.24 mW is achieved owing to the low optical loss of the PBG-BE mode.

© 2004 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

Original Manuscript: September 23, 2004
Revised Manuscript: October 18, 2004
Published: November 1, 2004

Soon-Hong Kwon, Se-Heon Kim, Sun-Kyung Kim, Yong-Hee Lee, and Sung-Bock Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062, (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  4. S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, �??Two-dimensional photonic crystal hexagonal waveguide ring laser,�?? Appl. Phys. Lett. 81, 2499-2501 (2002). [CrossRef]
  5. S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, �??Characteristics of a stick resonator in a two-dimensional photonic crystal slab,�?? J. Appl. Phys. 95, 411-416 (2004). [CrossRef]
  6. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, �??Slab-edge modes in two-dimensional Appl. Phys. Lett. 84, 3016-3018 (2004). [CrossRef]
  7. H. Altug and J. Vuckovic, �??Two-dimensional coupled photonic crystal resonator arrays,�?? Appl. Phys. Lett. 84, 161-163 (2004). [CrossRef]
  8. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,�?? Science 293, 1123-1124 (2001). [CrossRef] [PubMed]
  9. H. Y. Ryu, S. H. Kwon, Y. H. Lee, and J. S. Kim, �??Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,�?? Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  10. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d�??Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, �??InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,�?? Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  11. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, �??Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,�?? Appl. Phys. Lett. 83, 3870-3872 (2003). [CrossRef]
  12. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  13. M. Notomi, H. Suzuki, and T. Tamamura, �??Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic bandgaps,�?? Appl. Phys. Lett. 78, 1325-1327 (2001). [CrossRef]
  14. H. Y. Ryu, M. Notomi, and Y. H. Lee, �??Finite-difference time-domain investigation of band-edge resonant modes in finite size two-dimensional photonic crystal slab,�?? Phys. Rev. B 68, 45209-1-9 (2003). [CrossRef]
  15. K. Srinivasan, P. E. Barclay, and O. Painter, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited