OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 7 — Apr. 5, 2004
  • pp: 1409–1416

Use of a simple cavity geometry for low and high repetition rate modelocked Ti:sapphire lasers

Amy L. Lytle, Erez Gershgoren, Ra’anan I. Tobey, Margaret M. Murnane, Henry C. Kapteyn, and Dirk Müller  »View Author Affiliations


Optics Express, Vol. 12, Issue 7, pp. 1409-1416 (2004)
http://dx.doi.org/10.1364/OPEX.12.001409


View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a general procedure for varying the repetition rate of a modelocked Ti:sapphire laser using an asymmetric focusing geometry. Using this procedure, we have made an extended length cavity with a repetition rate of 45 MHz, and a reduced length cavity with a repetition rate of 275 MHz, each of which generates sub-20 fs pulses. This procedure allows the repetition rate of the laser to be more precisely tailored for a variety of applications without compromise in performance.

© 2004 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Research Papers

History
Original Manuscript: January 26, 2004
Revised Manuscript: March 24, 2004
Published: April 5, 2004

Citation
Amy Lytle, Erez Gershgoren, Ra�??anan Tobey, Margaret Murnane, Henry Kapteyn, and Dirk Müller, "Use of a simple cavity geometry for low and high repetition rate modelocked Ti:sapphire lasers," Opt. Express 12, 1409-1416 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1409


Sort:  Journal  |  Reset  

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991). [CrossRef] [PubMed]
  2. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, �??Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 18, 977-979 (1993). [CrossRef] [PubMed]
  3. A. Baltuska, Z. Wei, M.S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, �??All-solid-state cavity-dumped sub-5-fs laser,�?? Appl. Phys. B. 65, 175-188 (1997). [CrossRef]
  4. Y. H. Liau, A. N. Unterreiner, and N. F. Scherer, �??Femtosecond-pulse cavity-dumped solid-state oscillator design and application to ultrafast microscopy,�?? Appl. Opt. 38, 7386-7392 (1999). [CrossRef]
  5. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, �??A 36 nJ-15.5 MHz extended-cavity Ti:sapphire oscillator,�?? presented at the Conference on Lasers and Electro-Optics, Baltimore, Maryland, (1999).
  6. A. M. Kowalevicz, Jr., A. Tucay Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003). [CrossRef] [PubMed]
  7. J. H. Sung, K. Hong, Y. H. Cha, and C. H. Nam, �??13-fs, 1-MW Ti:Sapphire Laser Oscillator in a Long-Cavity Configuration,�?? Jpn. J. Appl. Phys. 41, L931-L934 (2002). [CrossRef]
  8. A. G. Fox and T. Li, �??Computer-simulation of laser resonators �?? retrospective view,�?? IEEE J. Quantum. Electron. 15, D74-xD74 (1979). [CrossRef]
  9. S. Chu, T. Liu, C. Sun, C. Lin, and H. Tsai, �??Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,�?? Opt. Express 11, 933-938 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933</a> [CrossRef] [PubMed]
  10. A. Bartels, T. Dekorsy, and H. Kurz, �??Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,�?? Opt. Lett. 24, 996-998 (1999). [CrossRef]
  11. A. Bartels and H. Kurz, �??Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,�?? Opt. Lett. 27, 1839-1841 (2002). [CrossRef]
  12. M. Ramaswamy-Paye and J. G. Fujimoto, �??Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,�?? Opt. Lett. 19, 1756-1758 (1994). [CrossRef] [PubMed]
  13. Z. Liu, S. Izumida, C. Liu, N. Sarukura, T. Hikita, Y. Segawa, T. Hatani, T. Sugaya, T. Nakagawa, and Y. Sugiyama, �??1-GHz repetition-rate mode-locked Ti:sapphire laser using a saturable Bragg reflector,�?? Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 29.
  14. A. Stingl, C. Spielmann, R. Szipöcs, and F. Krausz, �??Compact high-repetition-rate femtosecond lasers using chirped mirrors,�?? in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 66-67.
  15. V. Magni, G. Cerullo , and S. De Silvestri,�??Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,�?? Opt. Commun. 101, 365-370 (1993) [CrossRef]
  16. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum. Electron. 30, 1100-1114 (1994). [CrossRef]
  17. O. E. Martinez and J. L. A. Chilla, "Self-mode-locking of Ti:sapphire lasers: a matrix formalism," Opt. Lett. 17, 1210-1212 (1992). [CrossRef] [PubMed]
  18. I. P. Christov, V. Stoev, M. Murnane, and H. Kapteyn, "Mode-locking with a compensated space-time astigmatism," Opt. Lett. 20, 2111-2113 (1995). [CrossRef] [PubMed]
  19. I. P. Christov, H. C. Kapteyn, M. M. Murnane, C. P. Huang, and J. P. Zhou, "Space-Time Focusing of Femtosecond Pulses in a Ti-Sapphire Laser," Opt. Lett. 20, 309-311 (1995). [CrossRef] [PubMed]
  20. A. Penzkofer, M. Wittmann, M. Lorenz, E. Siegert, and S. Macnamara, �??Kerr lens effects in a folded-cavity four-mirror linear resonator,�?? Opt. Quantum. Electron. 28, 423-442 (1996). [CrossRef]
  21. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, �??Astigmatically compensated cavities for CW dye lasers,�?? IEEE J. Quantum. Electron. QE-8, 373-379 (1972). [CrossRef]
  22. S. Uemura and K Miyazaki, �??Femtosecond Cr:LiSAF laser pumped by a single diode laser,�?? Opt. Commun. 138, 330-332 (1997). [CrossRef]
  23. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, �??Highly Compact and Efficient Femtosecond Cr:LiSAF Lasers,�?? IEEE J. Quantum. Electron. 38, 360-368 (2002). [CrossRef]
  24. R. Trebino and D. J. Kane, �??Using phase retrieval to measure the intensity and phase of ultrashort pulses --frequency-resolved optical gating.�?? J. Opt. Soc. Am. A 10, 11 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited