OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1540–1550

Application of an ARROW model for designing tunable photonic devices

Natalia M. Litchinitser, Steven C. Dunn, Paul E. Steinvurzel, Benjamin J. Eggleton, Thomas P. White, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1540-1550 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microstructured optical fibers with the low refractive index core surrounded by high refractive index cylindrical inclusions reveal several intriguing properties. Firstly, there is a guiding regime in which the fibers’ confinement loss is strongly dependent of wavelength. In this regime, the positions of loss maxima are largely determined by the individual properties of high index inclusions rather than their position and number. Secondly, the spectra of these fibers can be tuned by changing the refractive index of the inclusions. In this paper we review transmission properties of these fibers and discuss their potential applications for designing tunable photonic devices.

© 2004 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Focus Issue: Photonic crystals and holey fibers

Original Manuscript: March 9, 2004
Revised Manuscript: April 8, 2004
Published: April 19, 2004

Natalia Litchinitser, Steven Dunn, Paul Steinvurzel, Benjamin Eggleton, Thomas White, Ross McPhedran, and C. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004)

Sort:  Journal  |  Reset  


  1. V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, �??Fibre-optical features of a glass sponge,�?? Nature 424, 899-900 (2003). [CrossRef] [PubMed]
  2. G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>. [CrossRef] [PubMed]
  6. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  7. P. St. J. Russell, �??Photonic crystal fibres,�?? Science 299, 358-362 (2003). [CrossRef] [PubMed]
  8. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, �??An all-dielectric coaxial wavguide,�?? Science 289, 415-419 (2000). [CrossRef] [PubMed]
  9. C. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber gratings,�?? Appl. Phys. Lett. 82, 1338-1340 (2003). [CrossRef]
  10. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, B. J. Eggleton, �??Highly tunable birefringent microstructured optical fiber,�?? Opt. Lett. 27, 842-844 (2002). [CrossRef]
  11. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. M. Bassett, S. C. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319</a>. [CrossRef] [PubMed]
  12. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  13. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) Vol. 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2002), pp. 466-468.
  14. T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594(2002). [CrossRef]
  16. A. K. Abeeluck, N. M. Litchinitser, C. Headley, B. J. Eggleton, �??Analysis of spectral characteristics of photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>. [CrossRef] [PubMed]
  17. T. P. White, R. C. McPhedran, C. Martijn de Sterke, N. M. Litchinitser, B. J. Eggleton , �??Resonance and scattering in microstructured optical fibers,�?? Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  18. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T.P. White, R.C. McPhedran, C. Martijn de Sterke, �??Resonances and modal cutoff in microstructured optical waveguides,�?? Opt. Express 11, 1243-1251 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243</a>. [CrossRef] [PubMed]
  19. M. A. Duguay, Y. Kukubun, T. L. Koch, L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,�?? Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  20. A. Iocco, H. G. Limberger, R. P. Salathé. L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, �??Bragg grating fast tunable filter for wavelength division multiplexing,�?? J. Lightwave Technol. 17, 1217-1221 (1999). [CrossRef]
  21. H. Y. Liu, G. D. Peng, P. L. Chu, �??Polymer fiber Bragg gratings with 28 dB transmission rejection,�?? IEEE Photon. Technol. Lett. 14, 935-937 (2002). [CrossRef]
  22. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Select. Topics Quantum Electron. 6, 150-162 (2000). [CrossRef]
  23. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, L. C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  24. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, R. C. McPhedran, �??Multipole method for microstructured optical fibers. II. Implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  26. A. C. Lind and J. M. Greenberg, �??Electromagnetic scattering by obliquely oriented cylinders,�?? J. Appl. Phys. 37, 3195-3203 (1966). [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPEG (1445 KB)     
» Media 2: MPEG (1446 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited