OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1605–1610

All-optical tunability of a nonlinear photonic crystal channel drop filter

Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, Jr  »View Author Affiliations


Optics Express, Vol. 12, Issue 8, pp. 1605-1610 (2004)
http://dx.doi.org/10.1364/OPEX.12.001605


View Full Text Article

Enhanced HTML    Acrobat PDF (705 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a numerical analysis of an optically tunable channel drop filter that consists of a resonant cavity side-coupled to a waveguide embedded in a two-dimensional nonlinear photonic crystal. We first introduce a numerical method that allows us to calculate the photonic band structure of a nonlinear photonic crystal, as well as the frequency and field profile of cavity and waveguide modes. Then, we use this numerical method to study the dependence of the resonant frequency of a cavity side-coupled to a waveguide, on the optical power in the waveguide.

© 2004 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Focus Issue: Photonic crystals and holey fibers

History
Original Manuscript: February 27, 2004
Revised Manuscript: March 18, 2004
Manuscript Accepted: March 21, 2004
Published: April 19, 2004

Citation
Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, "All-optical tunability of a nonlinear photonic crystal channel drop filter," Opt. Express 12, 1605-1610 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two–dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  6. M. J. Steel, M. Levy, R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photon. Tecnol. Lett. 12, 1171–1173 (2000). [CrossRef]
  7. D. Scrymgeour, N. Malkova, S. Kim, V. Gopalan, “Electro-optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett. 82, 3176–3178 (2003). [CrossRef]
  8. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  9. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 83, 851–853 (2003). [CrossRef]
  10. L. Brzozowski, V. Sukhovatkin, E. H. Sargent, A. J. SpringThorpe, M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron. 39, 924–930 (2003). [CrossRef]
  11. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  12. M. F. Yanik, S. Fan, M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]
  13. M. Bahl, N. C. Panoiu, R. M. Osgood, “Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional Kerr defects,” Phys. Rev. E 67, 056604(1–9) (2003). [CrossRef]
  14. N. C. Panoiu, M. Bahl, R. M. Osgood, “Optically tunable superprism effect in nonlinear photonic crystals,” Opt. Lett. 28, 2503–2505 (2003). [CrossRef] [PubMed]
  15. N. C. Panoiu, M. Bahl, R. M. Osgood, “Ultrafast optical tuning of superprism effect in nonlinear photonic crystals,” J. Opt. Soc. Am. B, (submitted).
  16. K. M. Ho, K. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  17. V. Lousse, J. P. Vigneron, “Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials,” Phys. Rev. E 63, 027602(1–4) (2001). [CrossRef]
  18. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, Heidelberg, 2001).
  19. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000). [CrossRef] [PubMed]
  20. B.-S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003). [CrossRef] [PubMed]
  21. S. Mookherjea, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited