OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 9 — May. 3, 2004
  • pp: 1996–2001

Topology optimization and fabrication of photonic crystal structures

P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund  »View Author Affiliations

Optics Express, Vol. 12, Issue 9, pp. 1996-2001 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon-on-insulator based photonic crystal waveguide. A large low loss bandwidth of more than 200 nm for the TE polarization is experimentally confirmed.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(220.4830) Optical design and fabrication : Systems design
(230.5440) Optical devices : Polarization-selective devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Research Papers

Original Manuscript: March 30, 2004
Revised Manuscript: April 23, 2004
Published: May 3, 2004

P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. T. F. Krauss, R. M. De La Rue, and S. Brand, �??Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,�?? Nature 383, 699-702 (1996). [CrossRef]
  4. M. Thorhauge, L. H. Frandsen and P. I. Borel, �??Efficient Photonic Crystal Directional Couplers,�?? Opt. Lett. 28, 1525-1527 (2003). [CrossRef] [PubMed]
  5. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, �??Ultra-low-loss 3-dB Photonic Crystal Waveguide Splitter,�?? Opt. Lett. (to be published).
  6. D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, �??A Compact Two-dimensional Grating Coupler used as a Polarization Splitter,�?? IEEE Photon. Technol. Lett. 15, 1249-1251 (2003). [CrossRef]
  7. M. P. Bendsøe and N. Kikuchi, �??Generating optimal topologies in structural design using a homogenization method,�?? Comput. Meth. Appl. Mech. Eng. 71, 197-224 (1988). [CrossRef]
  8. M. P. Bendsøe and O. Sigmund, Topology optimization �?? Theory, Methods and Applications (Springer-Verlag, 2003).
  9. T. P. Felici and D. F. G. Gallagher, �??Improved waveguide structures derived from new rapid optimization techniques,�?? Proc. SPIE 4986, 375-385 (2003). [CrossRef]
  10. J. Smajic, C. Hafner and D. Erni, �??Design and optimization of an achromatic photonic crystal bend,�?? Opt. Express 11, 1378-1384 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378</a>. [CrossRef] [PubMed]
  11. W. J. Kim and J. D. O�??Brien, �??Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite element method,�?? J. Opt. Soc. Am. B 21, 289-295 (2004). [CrossRef]
  12. M. Tokushima, H. Kosaka, A. Tomita and H.Yamada, �??Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,�?? Appl. Phys. Lett. 76, 952-954 (2000). [CrossRef]
  13. T. Uusitupa, K. Kärkkäinen and K. Nikoskinen, �??Studying 120° PBG waveguide bend using FDTD,�?? Microwave Opt. Technol. Lett. 39, 326-333 (2003). [CrossRef]
  14. It should be emphasized that the method can readily be implemented in a 3D finite element model where the computational requirements naturally will be significantly higher.
  15. K. Svanberg, �??The method of moving asymptotes: a new method for structural optimization,�?? Int. J. Numer. Meth. Engng. 24, 359-373 (1987). [CrossRef]
  16. J. S. Jensen and O. Sigmund, �??Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,�?? Appl. Phys. Lett. 84, 2022-2024 (2004). [CrossRef]
  17. O. Sigmund and J. S. Jensen, �??Systematic design of phononic band gap materials and structures by topology optimization,�?? Phil. Trans. R. Soc. Lond. A 361, 1001-1019 (2003). [CrossRef]
  18. P.I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, M. Kristensen, and H. M. H. Chong, �??Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light,�?? Opt. Express 11, 1757-1762 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757</a>. [CrossRef] [PubMed]
  19. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, �??Comprehensive FDTD modelling of photonic crystal waveguide components,�?? Opt. Express 12, 234-248 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (150 KB)     
» Media 2: MOV (482 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited