OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 202–209

Distributing entanglement and single photons through an intra-city, free-space quantum channel

K.J. Resch, M. Lindenthal, B. Blauensteiner, H.R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger  »View Author Affiliations


Optics Express, Vol. 13, Issue 1, pp. 202-209 (2005)
http://dx.doi.org/10.1364/OPEX.13.000202


View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27±0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based free-space quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.

© 2005 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(270.0270) Quantum optics : Quantum optics

ToC Category:
Research Papers

History
Original Manuscript: December 8, 2004
Revised Manuscript: December 23, 2004
Manuscript Accepted: December 28, 2004
Published: January 10, 2005

Citation
K.J. Resch, M. Lindenthal, B. Blauensteiner, H.R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.  Bouwmeester, A.  Ekert, A.  Zeilinger, Eds. The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. P.R.  Tapster, J.G.  Rarity, P.C.M.  Owens, “Violation of Bell’s Inequality over 4 km of Optical Fiber,” Phys. Rev. Lett. 73, 1923–1926 (1994). [CrossRef] [PubMed]
  3. W.  Tittel, J.  Brendel, H.  Zbinden, N.  Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998). [CrossRef]
  4. I.  Marcikic, H.  de Riedmatten, W.  Tittel, H.  Zbinden, M.  Legré, N.  Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  5. I.  Marcikic, H.  de Riedmatten, W.  Tittel, H.  Zbinden, N.  Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003). [CrossRef] [PubMed]
  6. G.  Weihs, T.  Jennewein, C.  Simon, H.  Weinfurter, A.  Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998). [CrossRef]
  7. T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum Cryptography with Entangled Photons,” Phys. Rev. Lett. 84, 4729–4732 (2000). [CrossRef] [PubMed]
  8. R.  Ursin, T.  Jennewein, M.  Aspelmeyer, R.  Kaltenbaek, M.  Lindenthal, P.  Walther, A.  Zeilinger, “Quantum teleportation across the Danube,” Nature 430, 849 (2004). [CrossRef] [PubMed]
  9. A.  Poppe, A.  Fedrizzi, R.  Ursin, H.R.  Böhm, T.  Lorünser, O.  Maurhardt, M.  Peev, M.  Suda, C.  Kurtsiefer, H.  Weinfurter, T.  Jennewein, A.  Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3865 [CrossRef] [PubMed]
  10. W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett., 81, 3283–3286 (1998). [CrossRef]
  11. W. T.  Buttler, R. J.  Hughes, S. K.  Lamoreaux, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000). [CrossRef] [PubMed]
  12. R.J.  Hughes, J.E.  Nordholt, D.  Derkacs, C.G.  Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43 (2002). [CrossRef]
  13. J.G.  Rarity, P.R.  Tapster, P.M.  Gorman, “Secure free-space key exchange to 1.9 km and beyond,” J. Mod. Opt. 48, 1887–1901 (2001).
  14. C.  Kurtsiefer, P.  Zarda, M.  Halder, H.  Weinfurter, P.M.  Gorman, P.R.  Tapster, J.G.  Rarity, “A step towards global key distribution,” Nature 419, 450 (2002). [CrossRef] [PubMed]
  15. M.  Aspelmeyer, H. R.  Böhm, T.  Gyatso, T.  Jennewein, R.  Kaltenbaek, M.  Lindenthal, G.  Molina-Terriza, A.  Poppe, K.  Resch, M.  Taraba, R.  Ursin, P.  Walther, A.  Zeilinger, “Long-Distance Free-Space Distribution of Quantum Entanglement,” Science 301, 621–623 (2003). [CrossRef] [PubMed]
  16. E.  Waks, A.  Zeevi, Y.  Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002). [CrossRef]
  17. R.J.  Hughes, W.T.  Buttler, P.G.  Kwiat, S.K.  Lamoreaux, G.L.  Morgan, J.E.  Nordholt, C.G.  Peterson, “Free-space quantum key distribution in daylight,” J. Mod. Opt. 47, 549–562, (2000).
  18. J.G.  Rarity, P.R.  Tapster, P.M.  Gorman, P.  Knight, “Ground to satellite secure key exchange using quantum cryptography,” New J. Phys. 4, 82, (2002). [CrossRef]
  19. J.E.  Nordholt, R.J.  Hughes, G.L.  Morgan, C.G.  Peterson, C.C.  Wipf, “Present and future quantum key distribution”, Proc. SPIE 4635, 116–126 (2002). [CrossRef]
  20. M.  Aspelmeyer, T.  Jennewein, M.  Pfenningbauer, W.R.  Leeb, A.  Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron. 9, 1541–1551 (2003). [CrossRef]
  21. C.F.  Bohren, B.A.  Albrecht, Atmospheric Thermodynamics, (Oxford University Press, New York,1988).
  22. The transmission of 800nm light from the whole vertical atmosphere is about 80% under good weather conditions [18,19]. The horizontal attenuation coefficient measured in Vienna was approximately ?=0.05km-1. The horizontal distance with the same attenuation as the whole atmosphere vertically is, L=-ln(0.8)/?=4.5km. H.  Horwath, L.  Alados Arboledas, F.J.  Olmo, O.  Jovanovi?, M.  Gangl, W.  Kaller, C.  Sánchez, H.  Sauerzopf, S.  Seidl, “Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing,” Journal of Geophysical Research (Atmospheres) 107, No. D19, AAC 9 (2002).
  23. L.  Mandel, “Proposal for almost noise-free optical communication under conditions of high background,” J. Opt. Soc. Am. B 1, 108–110 (1984). [CrossRef]
  24. C.K.  Hong, S.R.  Friberg, L.  Mandel, “Optical communication channel based on coincident photon pairs,” Appl. Opt. 24, 3877–3882 (1985). [CrossRef] [PubMed]
  25. S.F.  Seward, P.R.  Tapster, J.G.  Walker, J.G.  Rarity, “Daylight demonstration of low-light-level communication system using correlated photon pairs,” Quantum Opt. 3, 201–207 (1991). [CrossRef]
  26. C. K.  Hong, L.  Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986). [CrossRef] [PubMed]
  27. J.  Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics 1, 195–200 (1964).
  28. J.F.  Clauser, M.A.  Horne, A.  Shimony, R.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  29. P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A.V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  30. N.  Gisin, G.  Ribordy, W.  Tittel, H.  Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  31. N.  Lütkenhaus, “Estimates for practical quantum cryptography,” Phys. Rev. A 59, 3301–3319 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited