OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 245–255

Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 245-255 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a guided wave is impinging onto a Photonic Crystal (PC) mirror, a fraction of the light is not reflected back and is radiated into the claddings. We present a theoretical and numerical study of this radiation problem for several three-dimensional mirror geometries which are important for light confinement in micropillars, air-bridge microcavities and two-dimensional PC microcavities. The cause of the radiation is shown to be a mode-profile mismatch. Additionally, design tools for reducing this mismatch by tuning the mirror geometry are derived. These tools are validated by numerical results performed with a three-dimensional Fourier modal method. Several engineered mirror geometries which lower the radiation loss by several orders of magnitude are designed.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

Original Manuscript: October 25, 2004
Revised Manuscript: December 22, 2004
Manuscript Accepted: December 30, 2004
Published: January 10, 2005

C. Sauvan, G. Lecamp, P. Lalanne, and J.P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.J.  Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  2. J.P.  Zhang, D.Y.  Chu, S.L.  Wu, W.G.  Bi, R.C.  Tiberio, R.M.  Joseph, A.  Taflove, C.W.  Tu, S.T.  Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996). [CrossRef]
  3. J.S.  Foresi, P.R.  Villeneuve, J.  Ferrera, E.R.  Thoen, G.  Steinmeyer, S.  Fan, J.D.  Joannopoulos, L.C.  Kimerling, H.I.  Smith, E.P.  Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  4. T.F.  Krauss, O.  Painter, A.  Scherer, J.S.  Roberts, R.M.  De La Rue, “Photonic microstructures as laser mirrors,” Opt. Eng. 37, 1143–1148 (1998). [CrossRef]
  5. T.  Baba, M.  Hamasaki, N.  Watanabe, P.  Kaewplung, A.  Matsutani, T.  Mukaihara, F.  Koyama, K.  Iga, “A novel short-cavity laser with deep-grating distributed Bragg reflectors,” Jpn. J. Appl. Phys. 35, 1390–1394 (1996). [CrossRef]
  6. B.E.  Little, H.A.  Haus, J.S.  Foresi, L.C.  Kimerling, E.P.  Ippen, D.J.  Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Phot. Technol. Lett. 10, 816–818 (1998). [CrossRef]
  7. Y.  Akahane, T.  Asano, B.S.  Song, S.  Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512–1514 (2003). [CrossRef]
  8. H.G.  Park, J.K.  Hwang, J.  Huh, H.Y.  Ryu, Y.H.  Lee, J.S.  Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001). [CrossRef]
  9. J.M.  Gérard, B.  Gayral, “Strong Purcell Effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999). [CrossRef]
  10. G.S.  Solomon, M.  Pelton, Y.  Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001). [CrossRef] [PubMed]
  11. S.G.  Johnson, S.  Fan, A.  Mekis, J. D.  Joannopoulos, “Multipole-cancellation mechanism for high- Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3300 (2001). [CrossRef]
  12. K.  Srinivasan, O.  Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Exp. 10, 670–684 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
  13. J.  Vuckovic, M.  Loncar, H.  Mabuchi, A.  Scherer, “Optimization of the Q factor in Photonic Crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002). [CrossRef]
  14. Y.  Akahane, T.  Asano, B.S.  Song, S.  Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  15. P.  Lalanne, S.  Mias, J.P.  Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt Express 12, 458–467 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-458 [CrossRef] [PubMed]
  16. M.  Palamaru, P.  Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1469 (2001). [CrossRef]
  17. P.  Lalanne, J. P.  Hugonin, “Bloch-wave engineering for high Q’s, small V’s microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003). [CrossRef]
  18. E.  Silberstein, P.  Lalanne, J.P.  Hugonin, Q.  Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–28275 (2001). [CrossRef]
  19. Q.  Cao, P.  Lalanne, J.P.  Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguide,” J. Opt. Soc. Am. A 19, 335–338 (2002). [CrossRef]
  20. W.C.  Chew, W.H.  Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  21. N.  Château, J.P.  Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994). [CrossRef]
  22. L.  Li, “Use or Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  23. P.  Lalanne, G.M.  Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  24. L.  Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J.Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  25. P.  Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev B 58, 9801–9807 (1998). [CrossRef]
  26. E.  Popov, M.  Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  27. J.  Ctyroky, S.  Helfert, R.  Pregla, P.  Bienstman, R.  Baets, R.  De Ridder, R.  Stoffer, G.  Klaasse, J.  Petracek, P.  Lalanne, J.P.  Hugonin, R.M.  De La Rue, “Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quant. Electron. 34, 455–470 (2002). [CrossRef]
  28. C.  Sauvan, P.  Lalanne, J.C.  Rodier, J.P.  Hugonin, A.  Talneau, “Accurate modeling of line-defect Photonic Crystal waveguides,” IEEE Photon. Technol. Lett. 15, 1243–1245 (2003). [CrossRef]
  29. P.  Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38, 800–804 (2002). [CrossRef]
  30. A.  Yariv, P.  Yeh, Optical waves in crystals (John Wiley & Sons, New York, 1984).
  31. A.  Chutinan, S.  Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000). [CrossRef]
  32. M.  Notomi, K.  Yammada, A.  Shinya, J.  Takahashi, C.  Takayashi, I.  Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, art. #253902 (2001). [CrossRef] [PubMed]
  33. C.  Sauvan, P.  Lalanne, J.P.  Hugonin, “Tuning holes in Photonic Crystal nanocavities,” Nature 429, 1 (2004). [CrossRef] [PubMed]
  34. H.Y.  Ryu, M.  Notomi, E.  Kuramoti, T.  Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069(2004). [CrossRef]
  35. P.  Lalanne, J.P.  Hugonin, J.M.  Gérard, “Electromagnetic study of the Q of pillar microcavities in the small limit diameter,” Appl. Phys. Lett. 84, 4726–4728 (2004). [CrossRef]
  36. J.  Vuckovic, M.  Pelton, A.  Scherer, Y.  Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, #023808 (2002). [CrossRef]
  37. E.  Aarts, J.  Korst, Simulated Annealing and Boltzmann Machine (John Wiley & Sons, New York 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited