OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 344–351

Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments

S. Balslev and A. Kristensen  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 344-351 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a single-mode, single-polarization, distributed-feedback liquid dye laser, based on a short high-order Bragg grating defined in a single polymer layer between two glass substrates. In this device we obtain single-mode operation in a multimode structure by means of transverse-mode discrimination with antiguiding segments. The laser is fabricated using microfabrication technology, is pumped by a pulsed frequency-doubled Nd:YAG laser, and emits narrow-line-width light in the chip plane at 577 nm. The output from the laser is coupled into integrated planar waveguides defined in the same polymer film. The laser device is thus well suited for integration, for example, into polymer based lab-on-a-chip microsystems.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.2050) Lasers and laser optics : Dye lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.4780) Lasers and laser optics : Optical resonators
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Research Papers

Original Manuscript: October 27, 2004
Revised Manuscript: January 6, 2005
Manuscript Accepted: January 6, 2005
Published: January 10, 2005

S. Balslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E.  Verpoorte, “Chip vision—optics for microchips,” Lab on a Chip 3, 42N–52N (2003).
  2. A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995). [CrossRef] [PubMed]
  3. L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.
  4. C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).
  5. G. P.  Agrawal, N. K.  Dutta, Semiconductor Lasers, 2nd. ed. (Reinhold, N.Y., 1993)
  6. J. T.  Kringlebotn, J.-L.  Archambault, D. N.  Payne, Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef] [PubMed]
  7. B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004) [CrossRef]
  8. K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003). [CrossRef]
  9. S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.
  10. B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003). [CrossRef]
  11. Y.  Cheng, K.  Sugioka, K.  Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004). [CrossRef] [PubMed]
  12. S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985). [CrossRef]
  13. L. A.  Coldren, S. W.  Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York, 1995).
  14. B. B.  Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969). [CrossRef]
  15. T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited