OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3619–3624

Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam

Yann Gilbert, Renaud Bachelot, Alexandre Vial, Gilles Lerondel, Pascal Royer, Alexandre Bouhelier, and Gary P. Wiederrecht  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3619-3624 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The local perturbation of a diffraction-limited spot by a nanometer sized gold tip in a popular apertureless scanning near-field optical microscopy (ASNOM) configuration is reproduced through topography changes in a photoresponsive polymer. Our method relies on the observation of the photochemical migration of azobenzene molecules grafted to a polymer placed beneath the tip. A local molecular displacement has been shown to be activated by a gold tip as a consequence of the lateral surface charge density present at the edges of the tip’s end, resulting from a strong near-field depolarization predicted by theory.

© 2005 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Research Papers

Original Manuscript: March 21, 2005
Revised Manuscript: April 29, 2005
Published: May 16, 2005

Yann Gilbert, Renaud Bachelot, Alexandre Vial, Gilles Lerondel, Pascal Royer, Alexandre Bouhelier, and Gary Wiederrecht, "Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam," Opt. Express 13, 3619-3624 (2005)

Sort:  Journal  |  Reset  


  1. Y. Inouye and S. Kawata, �??Near-field scanning optical microscope with a metallic probe tip,�?? Opt. Lett. 19, 159 -161 (1994). [CrossRef] [PubMed]
  2. F. Zenhausern, M.P. O�??Boyle, and H. K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  3. R. Bachelot, P. Gleyzes and A. C. Boccara, �??Near-field optical microscope based on local perturbation of a diffraction spot,�?? Opt. Lett. 20, 1924-1926 (1995). [CrossRef] [PubMed]
  4. R. Hillenbrand, T. Taubner and F. Keilmann, �??Phonon-enhanced light-matter interactions at the nanoscale,�?? Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  5. G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, �??Optical scattering from isolated metal nanoparticles and arrays,�?? J. Phys. Chem. B. 107, 1419-14198 (2003). [CrossRef]
  6. A. Bouhelier, M. R. Beversluis, L. Novotny, �??Near-field scattering of longitudinal fields,�?? Appl. Phys. Lett. 82, 4596-4598 (2003). [CrossRef]
  7. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, �??High-resolution near-field Raman microscopy of single-walled carbon nanotubes,�?? Phys. Rev. Lett. 90, 095503/1- 095503/4 (2003). [CrossRef]
  8. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, �??Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,�?? Phys. Rev. Lett. 92, 220801/1-220801/4 (2004). [CrossRef]
  9. A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, �??Near-field second harmonic generation induced by local field enhancement,�?? Phys. Rev. Lett. 90, 13903/1-13903/4 (2003). [CrossRef]
  10. A. Natansohn and P. Rochon, �??Photoinduced motions in azo-containing polymers,�?? Chem. Rev. 102, 4139-4175 (2002). [CrossRef] [PubMed]
  11. R. Bachelot, F. H�??Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, �??Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,�?? J. Appl. Phys. 94, 2060-2072 (2003). [CrossRef]
  12. R. Stoeckle, Ch. Fokas, V. Deckert, and R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, �??High quality near-field optical probes by tube etching,�?? Appl. Phys. Lett., 75, 160-162 (1999). [CrossRef]
  13. J. K. Karrai and R. D. Grober, �??Piezoelectric tip-sample distance control for near-field optical microscopes,�?? Appl. Phys. Lett. 66, 1842-1844 (1995). [CrossRef]
  14. L. Novotny, E. J. Sanchez, X. S. Xie, �??Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,�?? Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics. The finite difference time-domain method, 2nd Edition (Artech House, Boston, 2000).
  16. L. Novotny, R. X. Bian and X. S. Xie, �??Theory of nanometric optical tweezers,�?? Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  17. S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, �??Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,�?? J. Phys. Chem. B 104, 6152-6163 (2000). [CrossRef]
  18. Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, �??High-resolution nanophotolithography in atomic force microscopy contact mode,�?? Macromol. 37, 3780-3791 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited