OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3666–3672

Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations

Snow H. Tseng, Young L. Kim, Allen Taflove, Duncan Maitland, Vadim Backman, and Joseph T. Walsh, Jr.  »View Author Affiliations


Optics Express, Vol. 13, Issue 10, pp. 3666-3672 (2005)
http://dx.doi.org/10.1364/OPEX.13.003666


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report what we believe to be the first simulation of enhanced backscattering (EBS) of light by numerically solving Maxwell’s equations without heuristic approximations. Our simulation employs the pseudospectral time-domain (PSTD) technique, which we have previously shown enables essentially exact numerical solutions of Maxwell’s equations for light scattering by millimeter-volume random media consisting of micrometer-scale inhomogeneities. We show calculations of EBS peaks of random media in the presence of speckle; in addition, we demonstrate speckle reduction using a frequency-averaging technique. More generally, this new technique is sufficiently robust to permit the study of EBS phenomena for random media of arbitrary geometry not amenable to simulation by other approaches, especially with regard to extension to full-vector electrodynamics in three dimensions.

© 2005 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(290.1350) Scattering : Backscattering

ToC Category:
Research Papers

History
Original Manuscript: March 25, 2005
Revised Manuscript: April 18, 2005
Published: May 16, 2005

Citation
Snow Tseng, Young Kim, Allen Taflove, Duncan Maitland, Vadim Backman, and Joseph Walsh, Jr., "Simulation of enhanced backscattering of light by numerically solving Maxwell�??s equations without heuristic approximations," Opt. Express 13, 3666-3672 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3666


Sort:  Journal  |  Reset  

References

  1. E. Akkermans and G. Montambaux, "Mesoscopic physics of photons" J. Opt. Soc. Am. B 21, 101-112 (2004). [CrossRef]
  2. Y.L. Kim, Y. Liu, V.M. Turzhitsky, H.K. Roy, R.K. Wali, and V. Backman, "Coherent backscattering spectroscopy" Opt. Lett. 29, 1906-1908 (2004). [CrossRef] [PubMed]
  3. R. Sapienza, S. Mujumdar, C. Cheung, A.G. Yodh, and D. Wiersma, "Anisotropic weak localization of light" Phys. Rev. Lett. 92 (2004). [CrossRef] [PubMed]
  4. G. Labeyrie, D. Delande, C.A. Muller, C. Miniatura, and R. Kaiser, "Coherent backscattering of light by cold atoms: Theory meets experiment" Europhys. Lett. 61, 327-333 (2003). [CrossRef]
  5. I.V. Meglinski, V.L. Kuzmin, D.Y. Churmakov, and D.A. Greenhalgh, "Monte Carlo simulation of coherent effects in multiple scattering" Proc. of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 461: 43-53 (2005). [CrossRef]
  6. R. Lenke, R. Tweer, and G. Maret, "Coherent backscattering of turbid samples containing large Mie spheres" J. Opt. A 4, 293-298 (2002). [CrossRef]
  7. V.L. Kuzmin and I.V. Meglinski, "Coherent multiple scattering effects and Monte Carlo method" JETP Lett. 79, 109-112 (2004). [CrossRef]
  8. E. Amic, J.M. Luck, and T.M. Nieuwenhuizen, "Anisotropic multiple scattering in diffusive media" J. Phys. A: Math. Gen. 29, 4915-4955 (1996). [CrossRef]
  9. J. Pearce and D.M. Mittleman, "Propagation of single-cycle terahertz pulses in random media" Opt. Lett. 26, 2002-2004 (2001). [CrossRef]
  10. M. Haney and R. Snieder, "Breakdown of wave diffusion in 2D due to loops" Phys. Rev. Lett. 91, (2003). [CrossRef] [PubMed]
  11. L. Marti-Lopez, J. Bouza-Dominguez, J.C. Hebden, S.R. Arridge, and R.A. Martinez-Celorio, "Validity conditions for the radiative transfer equation" J. Opt. Soc. Am. A 20, 2046-2056 (2003). [CrossRef]
  12. Q.H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm" IEEE Transactions on Geoscience and Remote Sensing, 37, 917-926 (1999). [CrossRef]
  13. Q.H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength" Microwave Opt. Technol. Lett. 15, 158-165 (1997). [CrossRef]
  14. S.H. Tseng, J.H. Greene, A. Taflove, D. Maitland, V. Backman, and J.T. Walsh, "Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium" Opt. Lett. 29, 1393-1395 (2004); 30: 56-57 (2005). [CrossRef] [PubMed]
  15. S.D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices" IEEE Transactions on Antennas and Propagation, 44: 1630-1639 (1996). [CrossRef]
  16. A. Taflove and S.C. Hagness, Computational Electrodynamics: the finite-difference time-domain method. 2000: Artech House. 852.
  17. M. Tomita and H. Ikari, "Influence of Finite Coherence Length of Incoming Light on Enhanced Backscattering" Physical Review B, 43: 3716-3719 (1991). [CrossRef]
  18. E. Akkermans, P.E. Wolf, and R. Maynard, "Coherent Backscattering of Light by Disordered Media �?? Analysis of the Peak Line-Shape" Phys. Rev. Lett. 56, 1471-1474 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited