OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4275–4285

Comparative analysis of deformable mirrors for ocular adaptive optics

Eugenie Dalimier and Chris Dainty  »View Author Affiliations


Optics Express, Vol. 13, Issue 11, pp. 4275-4285 (2005)
http://dx.doi.org/10.1364/OPEX.13.004275


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have evaluated the ability of three commercially available deformable mirrors to compensate the aberrations of the eye using a model for aberrations developed by Thibos, Bradley and Hong. The mirrors evaluated were a 37 actuator membrane mirror and 19 actuator piezo mirror (OKO Technologies) and a 35 actuator bimorph mirror (AOptix Inc). For each mirror, Zernike polynomials and typical ocular aberrated wavefronts were fitted with the mirror modes measured using a Twyman-Green interferometer. The bimorph mirror showed the lowest root mean square error, although the 19 actuator piezo device showed promise if extended to more actuators. The methodology can be used to evaluate new deformable mirrors as they become available.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3990) Optical devices : Micro-optical devices
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Research Papers

History
Original Manuscript: May 3, 2005
Revised Manuscript: May 23, 2005
Published: May 30, 2005

Citation
Eugenie Dalimier and Chris Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4275


Sort:  Journal  |  Reset  

References

  1. J. Liang and D. R. Williams, �??Aberrations and retinal image quality of the normal human eye,�?? J. Opt. Soc. Am. A 14, 2873�??2883 (1997). [CrossRef]
  2. J. Liang, D. R. Williams, and D. T. Miller, �??Supernormal vision and high-resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884�??2892 (1997). [CrossRef]
  3. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225�??238 (2004). [CrossRef]
  4. N. Doble, G. Y. Yoon, L. Chen, P. Bierden, B. Singer, S. Oliver, and D. R. Williams, �??Use of a microelectro-mechanical mirror for adaptive optics in the human eye,�?? Opt. Lett. 27, 1537�??1539 (2002). [CrossRef]
  5. E. J. Fernández and P. Artal, �??Membrane deformable mirror for adaptive optics: performance limits in visual optics,�?? Opt. Express 11, 1056�??1069 (2003). [CrossRef] [PubMed]
  6. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, �??Benefit of higher closed-loop bandwidths in ocular adaptive optics,�?? Opt. Express 11, 2597�??2605 (2003). [CrossRef] [PubMed]
  7. F. Vargas-Martin, P. M. Prieto, and P. Artal, �??Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,�?? J. Opt. Soc. Am. A 15, 2552�??2562 (1998). [CrossRef]
  8. L. N. Thibos, A. Bradley, and X. Hong, �??A statistical model of the aberration structure of normal, well-corrected eyes,�?? Ophthal. Physiol. Opt. 22, 427�??433 (2002). [CrossRef]
  9. M. K. Smolek and S. D. Klyce, �??Zernike Polynomial Fitting Fails to Represent All Visually Significant Corneal Aberrations,�?? Invest. Ophthalmol. Visual Sci. 44, 4676�??4681 (2003). [CrossRef]
  10. F. Roddier, Adaptive optics in astronomy, 1st ed. (Cambridge University Press, Cambridge, U.K., 1999). [CrossRef]
  11. G. Vdovin and P. M. Sarro, �??Flexible mirror micromachined in silicon,�?? Appl. Opt. 34, 2968�??2972 (1995). [CrossRef] [PubMed]
  12. C. Paterson, I. Munro, and J. C. Dainty, �??A low cost adaptive optics system using a membrane mirror,�?? Opt. Express 6, 175�??185 (2000). [CrossRef] [PubMed]
  13. D. A. Horsley, H. K. Park, S. P. Laut, and J. S. Werner, �??Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,�?? in Ophthalmic Technologies XV, F. Manns, P. G. Sderberg, A. Ho, B. E. Stuck, and e. M. Belkin, eds., Proc. SPIE 5688, 133�??144 (2005).
  14. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, �??Standards for reporting optical aberrations of eyes,�?? J. Refract. Surg. 18, 652�??660 (2000).
  15. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, �??Statistical variation of aberration structure and image quality in a normal population of healthy eyes,�?? J. Opt. Soc. Am. A 19, 2329�??2348 (2002). [CrossRef]
  16. K. M. Hampson, �??The higher-order aberrations of the human eye: relation to the pulse and effect on vision,�?? Ph.D. thesis, Imperial College, London (2004).
  17. E. Dalimier, K. M. Hampson, and J. C. Dainty, �??Effects of adaptive optics on visual performance,�?? in Imaging and Vision, e. Fionn D. Murtagh, ed., Proc. SPIE 5823 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited