OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4379–4389

Counterpropagating optical vortices in photorefractive crystals

D. Jović, D. Arsenović, A. Strinić, M. Belić, and M. Petrović  »View Author Affiliations


Optics Express, Vol. 13, Issue 12, pp. 4379-4389 (2005)
http://dx.doi.org/10.1364/OPEX.13.004379


View Full Text Article

Enhanced HTML    Acrobat PDF (1710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive numerical study of (2+1)D counter-propagating incoherent vortices in photorefractive crystals, in both space and time. We consider a local isotropic dynamical model with Kerr-type saturable nonlinearity, and identify the corresponding conserved quantities. We show, both analytically and numerically, that stable beam structures conserve angular momentum, as long as their stability is preserved. As soon as the beams loose stability, owing to radiation or non-elastic collisions, their angular momentum becomes non-conserved. We discover novel types of rotating beam structures that have no counterparts in the copropagating geometry. We consider the counterpropagation of more complex beam arrangements, such as regular arrays of vortices. We follow the transition from a few beam propagation behavior to the transverse pattern formation dynamics.

© 2005 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Research Papers

History
Original Manuscript: April 18, 2005
Revised Manuscript: May 24, 2005
Published: June 13, 2005

Citation
D. Jovi�?, D. Arsenovi�?, A. Strini�?, M. Beli�?, and M. Petrovi�?, "Counterpropagating optical vortices in photorefractive crystals," Opt. Express 13, 4379-4389 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4379


Sort:  Journal  |  Reset  

References

  1. M. Padgett, J. Courtial, and L. Allen, �??Light�??s Orbital Angular Momentum,�?? Phys. Today, May Issue, 35 (2004).
  2. V. I. Kruglov, and R. A. Vlasov, �??Spiral self-trapping propagation of optical beams in media with cubic nonlinearity,�?? Phys. Lett. A 111, 401 (1985). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185 (1992). [CrossRef] [PubMed]
  4. S. Trillo, and W. Torruellas, eds., Spatial Solitons (Springer, New York, 2001).
  5. Special Issue on solitons, ed. M. Segev, Opt. Phot. News 13, No. 2 (2002).
  6. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons, Academic Press, London (2003).
  7. M. Shih, M. Segev, and G. Salamo, �??Three-dimensional spiraling of interacting spatial solitons,�?? Phys. Rev. Lett. 78, 2551 (1997). [CrossRef]
  8. M. Shih, and M. Segev, �??Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,�?? Opt. Lett. 21, 1538 (1996). [CrossRef] [PubMed]
  9. A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, �??Solitary attractors and low-order filamentation in anisotropic self-focusing media,�?? Phys. Rev. A 57, 522 (1998). [CrossRef]
  10. N. Fressengeas, J. Maufoy, and G. Kugel, �??Temporal behavior of bidimensional photorefractive bright spatial solitons,�?? Phys. Rev. E 54, 6866 (1996). [CrossRef]
  11. M. Haelterman, A. P. Sheppard, and A. W. Snyder, �??Bimodal counterpropagating spatial solitary-waves,�?? Opt. Commun. 103, 145 (1993). [CrossRef]
  12. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odulov, �??Collisions between optical spatial solitons propagating in opposite directions,�?? Phys. Rev. Lett. 89, 133901 (2002). [CrossRef] [PubMed]
  13. O. Cohen, T. Carmon, M. Segev, and S. Odoulov, �??Holographic solitons,�?? Opt. Lett. 27, 2031 (2002). [CrossRef]
  14. O. Cohen, S. Lan, and T. Carmon, �??Spatial vector solitons consisting of counterpropagating fields,�?? Opt. Lett. 27, 2013 (2002). [CrossRef]
  15. C. Rotschild, O. Cohen, O.Mandela, T. Carmon, and M. Segev, �??Interactions between spatial screening solitons propagating in opposite directions,�?? J. Opt. Soc. Am. B 21, 1354 (2004). [CrossRef]
  16. M. Beli�?, Ph. Jander, A. Strini�? A. Desyatnikov, and C. Denz, �??Self-trapped bidirectional waveguides in a saturable photorefractive medium,�?? Phys. Rev. E 68, 025601 (2003). [CrossRef]
  17. K. Motzek, Ph. Jander, A. Desyatnikov, M. Beli�?, C. Denz, and F. Kaiser, �??Dynamic counterpropagating vector solitons in saturable self-focusing media,�?? Phys. Rev. E 68, 066611 (2003). [CrossRef]
  18. M. Beli�?, M. Petrovi�?, D. Jovi�?, A. Strini�?, D. Arsenovi�?, K. Motzek, F. Kaiser, Ph. Jander, C. Denz, M. Tlidi, and P. Mandel, �??Transverse modulational instabilities of counterpropagating solitons in photorefractive crystals,�?? Opt. Express 12, 708 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-708">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-708</a> [CrossRef] [PubMed]
  19. M. Beli�?, Ph. Jander, K. Motzek, A. Desyatnikov, D. Jovi�?, A. Strini�?, M. Petrovi�?, C. Denz, and F. Kaiser, �??Counterpropagating self-trapped beams in photorefractive crystals,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S190�??S196 (2004). [CrossRef]
  20. D. V. Skryabin, and W. J. Firth, �??Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media,�?? Phys. Rev. E 58, 3916 (1998). [CrossRef]
  21. A. S. Desyatnikov and Y. Kivshar, �??Spatial optical solitons and soliton clusters carrying an angular momentum,�?? J. Opt. B: Quantum Semiclass. Opt. 4, S58 (2002). [CrossRef]
  22. M. Beli�?, D. Vuji�?, A. Stepken, F. Kaiser, G. F. Calvo, F. Agullo-Lopez, and M. Carrascossa, �??Isotropic vs. anisotropic modeling of photorefractive solitons,�?? Phys. Rev. E 65, 066610 (2002). [CrossRef]
  23. A. V. Mamaev, M. Saffman, and A. A. Zozulya, �??Propagation of a mutually incoherent optical vortex pair in anisotropic nonlinear media,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S318�??S322 (2004). [CrossRef]
  24. C. C. Jeng, M. F. Shih, K. Motzek, and Y. Kivshar, �??Partially incoherent optical vortices in self-focusing nonlinear media,�?? Phys. Rev. Lett. 92, 043904 (2004). [CrossRef] [PubMed]
  25. D. Briedis, D. E. Petersen, D. Edmunson, W. Krolikowski, and O. Bang, �??Ring vortex solitons in nonlocal nonlinear media,�?? Opt. Express 13, 435 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-435</a> [CrossRef] [PubMed]
  26. K. Motzek, M. Beli�?, T. Richter, C. Denz, A. Desyatnikov, Ph. Jander, and F. Kaiser, �??Counterpropagating beams in biased photorefractive crystals: Anisotropic theory,�?? Phy. Rev. E 71, 016610 (2005). [CrossRef]
  27. Alexander V. Buryak, Yuri S. Kivshar, Ming-feng Shih, and Mordchai Segev, �??Induced Coherence and Stable Soliton Spiraling,�?? Phy. Rev. Lett 82, 81 (1999). [CrossRef]
  28. C. Denz, M. Schwab, and C. Weilnau, Transverse pattern formation in photorefractive optics (Springer, Berlin, 2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (223 KB)     
» Media 2: MOV (320 KB)     
» Media 3: MOV (475 KB)     
» Media 4: MOV (491 KB)     
» Media 5: MOV (545 KB)     
» Media 6: MOV (340 KB)     
» Media 7: MOV (288 KB)     
» Media 8: MOV (376 KB)     
» Media 9: MOV (366 KB)     
» Media 10: MOV (382 KB)     
» Media 11: MOV (615 KB)     
» Media 12: MOV (432 KB)     
» Media 13: MOV (515 KB)     
» Media 14: MOV (574 KB)     
» Media 15: MOV (737 KB)     
» Media 16: MOV (474 KB)     
» Media 17: MOV (836 KB)     
» Media 18: MOV (500 KB)     
» Media 19: MOV (415 KB)     
» Media 20: MOV (429 KB)     
» Media 21: MOV (280 KB)     
» Media 22: MOV (490 KB)     
» Media 23: MOV (714 KB)     
» Media 24: MOV (380 KB)     
» Media 25: MOV (2339 KB)     
» Media 26: MOV (1427 KB)     
» Media 27: MOV (1623 KB)     
» Media 28: MOV (623 KB)     
» Media 29: MOV (2418 KB)     
» Media 30: MOV (1530 KB)     
» Media 31: MOV (1673 KB)     
» Media 32: MOV (720 KB)     
» Media 33: MOV (1445 KB)     
» Media 34: MOV (1353 KB)     
» Media 35: MOV (2395 KB)     
» Media 36: MOV (2177 KB)     
» Media 37: MOV (13981 KB)     
» Media 38: MOV (13851 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited