OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4390–4395

Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer

Guangyong Zhou, Michael James Ventura, Min Gu, Aaron F. Mattews, and Yuri S. Kivshar  »View Author Affiliations

Optics Express, Vol. 13, Issue 12, pp. 4390-4395 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication and characterization of void-based body-centered-cubic (bcc) photonic crystals in a solidified transparent polymer by the use of a femtosecond laser-driven microexplosion method. The change in the refractive index in the region surrounding the void dots that form the bcc structures is verified by presenting confocal microscope images, and the bandgap properties are characterized by using a Fourier transform infrared spectrometer. The effect of the angle of incidence on the photonic bandgaps is also studied. We observe multiple stop gaps with a suppression rate of the main gap of 47% for a bcc structure with a lattice constant of 2.77 µm, where the first and second stop gaps are located at 3.7 µm and 2.2 µm, respectively. We also present a theoretical approach to characterize the refractive index of the material for calculating the bandgap spectra, and confirm that the wavelengths of the observed bandgaps are in good correlation with the analytical predictions.

© 2005 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(310.3840) Thin films : Materials and process characterization

ToC Category:
Research Papers

Original Manuscript: April 22, 2005
Revised Manuscript: May 25, 2005
Published: June 13, 2005

Guangyong Zhou, Michael Ventura, Min Gu, Aaron Matthews, and Yuri Kivshar, "Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer," Opt. Express 13, 4390-4395 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000). [CrossRef] [PubMed]
  4. S. Lin, V. M. Hietala, L. Wang, and E. D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771-1773 (1996). [CrossRef] [PubMed]
  5. T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  7. G. Zhou, M.J. Ventura, M.R. Vanner, and M. Gu, �??Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,�?? Opt. Lett. 29, 2240-2242 (2004). [CrossRef] [PubMed]
  8. G. Zhou, M.J. Ventura, M.R. Vanner, and M. Gu, �??Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material,�?? Appl. Phys. Lett. 86, 011108 (2005). [CrossRef]
  9. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Arbitrary-lattice photonic crystals created by multiphoton microfabrication,�?? Opt. Lett. 26, 325-327 (2001). [CrossRef]
  10. H.-B. Sun, Y. Xu, K. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Inlayed �??atom�??-like three-dimensional photonic crystal structures created with femtosecond laser microfabrication,�?? Proc. Mater. Res. Soc. 605, 85-90 (2000). [CrossRef]
  11. H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, �??Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,�?? Opt. Rev. 6, 396-398 (1999). [CrossRef]
  12. M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003). [CrossRef]
  13. G. Zhou, M. J. Ventura, M. Straub, and M. Gu, �?? In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal,�?? Appl. Phys. Lett. 84, 4415-4417 (2004). [CrossRef]
  14. E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997). [CrossRef]
  15. D. Day and M. Gu, �??Formation of voids in a doped polymethylmethacrylate polymer,�?? Appl. Phys. Lett. 80, 2404-2406 (2002). [CrossRef]
  16. M. Straub, M.J. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003). [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. D. Day and M. Gu, �??Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,�?? Appl. Opt. 37, 6299-6304 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (1669 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited