OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 16 — Aug. 8, 2005
  • pp: 6168–6174

Quasi-isotropic 3-D resolution in two-photon scanning microscopy

Cristina Ibáñez-López, Genaro Saavedra, Gilbert Boyer, and Manuel Martínez-Corral  »View Author Affiliations

Optics Express, Vol. 13, Issue 16, pp. 6168-6174 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the main challenges in three-dimensional microscopy is to overcome the lack of isotropy of the spatial resolution, which results from the axially-elongated shape of the point spread function. Such anisotropy gives rise to images in which significant axially-oriented structures of the sample are not resolved. In this paper we achieve an important improvement in z resolution in two-photon excitation microscopy through spatial modulation of the incident beam. Specifically, we demonstrate that the design and implementation of a simple shaded ring performs quasi-isotropic three-dimensional imaging and that the corresponding loss in luminosity can be easily compensated by most available femtosecond lasers. The outcome looks particularly relevant to nano-fabrication and optical manipulation.

© 2005 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.1220) Imaging systems : Apertures
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Research Papers

Original Manuscript: June 23, 2005
Revised Manuscript: July 28, 2005
Published: August 8, 2005

Cristina Ibáñez-López, Genaro Saavedra, Gilbert Boyer, and Manuel Martinez-Corral, "Quasi-isotropic 3-D resolution in two-photon scanning microscopy," Opt. Express 13, 6168-6174 (2005)

Sort:  Journal  |  Reset  


  1. Abbe, E. Arch. Mikrosk. Anat. 9, 413�??468 (1873). [CrossRef]
  2. T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998). [CrossRef]
  3. J. Miao, T. Ishikawa, B. Johnson, E. K. Anderson, B. Lai and K. O. Hodgson, "High resolution 3D x-ray diffraction microscopy," Phys. Rev. Lett. 89, 088303 (2002). [CrossRef] [PubMed]
  4. J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson and M. A. O�??Keefe, "Atomic resolution three-dimensional electron diffraction microscopy," Phys. Rev. Lett. 89, 155502 (2002). [CrossRef] [PubMed]
  5. C. M. Blanca and S. W. Hell, "Axial superresolution with ultrahigh aperture lenses," Opt. Express 10, 893-898 (2002). [PubMed]
  6. J. B. Pawley, ed., Handbook of biological confocal microscopy. Plenum Press, New York, 1995.
  7. The term superresolution introduced here is understood in the sense of Rayleigh criterion; i. e., as the narrowness of the PSF or, equivalently, the enhancement of the OTF for frequencies under the cut-off frequency.
  8. S. Lindek, J. Swoger and E. H. K. Stelzer, "Single-lens theta microscopy: resolution, efficiency and working distance," J. Mod. Opt. 46, 843-858 (1999).
  9. B. Bailey, D. L. Farkas, D. Lansing-Taylor and F. Lanni, "Enhancement resolution in fluorescence microscopy by standing-wave excitation," Science 366, 44-48 (1993).
  10. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt and E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004). [CrossRef] [PubMed]
  11. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000). [CrossRef]
  12. C. J. R. Sheppard, "Binary optics and confocal imaging," Opt. Lett. 24, 505-506 (1999). [CrossRef]
  13. M. Martínez-Corral, M. T. Caballero, E. H. K. Stelzer and J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002). [PubMed]
  14. G. Boyer, "New class of axially apodizing filters for confocal scanning microscopy," J. Opt. Soc. Am. A 19, 584-589 (2002). [CrossRef]
  15. M. Martínez-Corral, C. Ibáñez-López, G. Saavedra and M. T. Caballero, "Axial gain in resolution in optical sectioning fluorescence microscopy by shaded-ring filters," Opt. Express 11, 1740-1745 (2003). [CrossRef] [PubMed]
  16. S. S. Sherif and P. Török, "Pupil plane masks for super-resolution in high-numerical-aperture focusing," J. Mod. Opt. 51, 2007-2019 (2004).
  17. W. Denk, J. H. Strickler and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  18. C. M. Blanca, J. Bewersdorf and S. W. Hell, "Single sharp spot in fluorescence microscopy of two opposing lenses," Appl. Phys. Lett. 79, 2321-2323 (2001). [CrossRef]
  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sc. 97, 8206-8210 (2000). [CrossRef]
  20. M. Dyba and S. W. Hell, "Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]
  21. C. Ibáñez-López, I. Escobar, G. Saavedra and M. Martínez-Corral, "Optical sectioning improvement in two-color excitation scanning microscopy," Microsc. Res. Tech. 64, 96-102 (2004). [CrossRef] [PubMed]
  22. The eccentricity is defined here as e = �??(1-b^2 / a^2) , where a and b account for the lengths of the semimajor and semiminor axes, respectively.
  23. S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  24. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  25. B. Richards and E. Wolf, Proceedings of the Royal Society (London) A 253, 358 (1959). [CrossRef]
  26. P. Török and P. Varga, �??Electromagnetic diffraction of light focused through a stratified medium,�?? Appl. Opt. 36, 2305-2312 (1997). [CrossRef] [PubMed]
  27. O. Haeberlé, �??Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,�?? Opt. Commun. 216, 55-63 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited