OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 17 — Aug. 22, 2005
  • pp: 6354–6375

Vertically-stacked multi-ring resonator

M. Sumetsky  »View Author Affiliations


Optics Express, Vol. 13, Issue 17, pp. 6354-6375 (2005)
http://dx.doi.org/10.1364/OPEX.13.006354


View Full Text Article

Enhanced HTML    Acrobat PDF (696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A vertically-stacked multi-ring resonator (VMR), which is a sequence of ring resonators stacked on top of each other, is investigated. The light in the VMR propagates horizontally in the plane of rings and at the same time propagates vertically between the adjacent rings due to evanescent coupling. If fabricated, the VMR may be advantageous compared to the conventional planar arrangement of coupled rings due to its dramatic compactness and more flexible transmission characteristics. In this paper, the uniform VMR, which consists of N rings coupled to the input and output waveguides, is studied. The uniform VMR is a 3D version of a coupled resonator optical waveguide (CROW). Closed analytical expressions for the transmission amplitudes and eigenvalues are obtained by solving coupled wave equations. In the approximation considered, it is shown that, in contrast to the conventional planar ring CROW, a VMR can possess eigenmodes even when interring coupling as well as coupling between rings and waveguides is strong. For the isolated VMR, the eigenvalues of the propagation constant are shown to change linearly with the interring coupling coefficient. The resonance transmission near the VMR eigenvalues is investigated. The dispersion relation of a VMR with an infinite number of rings is found. For weak coupling, the VMR dispersion relation is similar to that of a planar ring CROW (leading, however, to a much smaller group velocity), while for stronger coupling, a VMR does not possess bandgaps.

© 2005 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(190.0190) Nonlinear optics : Nonlinear optics
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

History
Original Manuscript: July 8, 2005
Revised Manuscript: August 4, 2005
Published: August 22, 2005

Citation
M. Sumetsky, "Vertically-stacked multi-ring resonator," Opt. Express 13, 6354-6375 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6354


Sort:  Journal  |  Reset  

References

  1. C. K. Madsen and G. Lenz, �??Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,�?? IEEE Photon. Technol. Lett. 10, 994-996 (1998). [CrossRef]
  2. C. K. Madsen, S. Chandrasekhar, E. J. Laskowski, M. A. Cappuzzo, J. Bailey, E. Chen, L. T. Gomez, A. Griffin, R. Long, M. Rasras, A. Wong-Foy, L. W. Stulz, J. Weld, and Y. Low, �??An integrated tunable chromatic dispersion compensator for 40 Gb/s NRZ and CSRZ,�?? Optical Fiber Communication Conference, Postdeadline papers, Paper FD9, Anaheim (2002).
  3. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, �??Very High-Order Microring Resonator Filters for WDM Applications,�?? IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  4. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, �??Ultrahigh-quality-factor silicon-on-insulator microring resonator,�?? Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999). [CrossRef]
  6. J. E. Heebner, R. W. Boyd, and Q-H. Park, �??SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,�?? J. Opt. Soc. Am. B 19, 722-731 (2002). [CrossRef]
  7. S. Mookherjeaa, �??Semiconductor coupled-resonator optical waveguide laser,�?? Appl. Phys. Lett. 84, 3265-3267 (2004). [CrossRef]
  8. P. C. Sercel, K. J. Vahala, D. W. Vernooy, G. Hunziker, and R. B. Lee, �??Fiber ring optical resonators,�?? United States Patent Application Publication, US 2002/0041730 A1 (2002).
  9. M. Sumetsky, �??Optical fiber microcoil resonator,�?? Opt. Express 12, 2303-2316 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303</a>. [CrossRef] [PubMed]
  10. M. Sumetsky, �??Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,�?? Opt. Express 13, 4331-4340 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331</a>. [CrossRef] [PubMed]
  11. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, �??3-D Photonic Circuit Technology,�?? IEEE J. Sel. Top. Quant. Electron. 8, 935-942 (2001). [CrossRef]
  12. P. Koonath, K. Kishima, T. Indukuri, and B. Jalali, �??Sculpting of three-dimensional nano-optical structures in silicon,�?? Appl. Phys. Lett. 83, 4909-4911 (2003). [CrossRef]
  13. R.Kashyap, Fiber Bragg Gratings, Academic Press, 1999.
  14. M. Sumetsky, B. J. Eggleton, and P. S. Westbrook, �??Holographic methods for phase mask and fiber grating fabrication and characterization,�?? Proc. SPIE 4941, 1 (2003). [CrossRef]
  15. S. Shoji and S. Kawata, �??Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,�?? Appl. Phys. Lett. 76, 2668-2670 (2000). [CrossRef]
  16. G.Kakarantzas, T.E.Dimmick, T.A.Birks, R.LeRoux, and P.St.J.Russell "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001). [CrossRef]
  17. M. Sumetsky, �??Whispering-gallery-bottle microcavities: the three-dimensional etalon,�?? Opt. Lett. 29, 8-10 (2004). [CrossRef] [PubMed]
  18. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, �??Designing coupled-resonator optical waveguide delay lines,�?? J. Opt. Soc. Am. B 21, 1665-1672 (2004). [CrossRef]
  19. K. J. Vahala, �??Optical microcavities,�?? Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  20. A. W. Snyder and J. D. Love, Optical waveguide theory, Chapman & Hall, London, 1983.
  21. J. M. Bendickson, J. P. Dowling, and M. Scalora, �??Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  22. Y. Chen and S. Blair, �??Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,�?? Opt. Express 12, 3353-3366 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3353">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3353</a> [CrossRef] [PubMed]
  23. L. D. Landau and E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1958.
  24. M. Sumetskii, �??Modeling of complicated nanometer resonant tunneling devices with quantum dots�??, J. Phys. Condens. Matter 3, 2651�??2664 (1991). [CrossRef]
  25. M. Sumetsky and B. J. Eggleton, �??Modeling and optimization of complex photonic resonant cavity circuits,�?? Opt. Express 11, 381-391 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-381">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-381</a>. [CrossRef] [PubMed]
  26. F. Seitz, The modern theory of solids, McGraw-Hill Book Company, New York, 1940.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited