OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 17 — Aug. 22, 2005
  • pp: 6550–6557

Soliton-based pump-seed synchronization for few-cycle OPCPA

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. M. Zheltikov, and F. Krausz  »View Author Affiliations


Optics Express, Vol. 13, Issue 17, pp. 6550-6557 (2005)
http://dx.doi.org/10.1364/OPEX.13.006550


View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a significant simplification of the scheme for few-cycle Optical Parametric Chirped Pulse Amplification (OPCPA) which results in the elimination of a picosecond master oscillator and electronic synchronization loops. A fraction of a broadband seed pulse centered at 760 nm from a 70-MHz Ti:sapphire oscillator was frequency-shifted in a photonic crystal fiber to enable synchronized seeding of a picosecond Nd:YAG pump laser. The seed radiation at 1064 nm is produced in the soliton regime which makes it inherently more intense and stable in comparison with other methods of frequency conversion. The remaining fraction of the Ti:sapphire output is amplified with a FWHM bandwidth of 250 nm in a single timing-jitter-free OPCPA stage. Our work opens up the exciting possibility to use sub-picosecond pump pulses from highly efficient Yb-based amplifiers for jitter-less parametric amplification of carrier-envelope phase stabilized pulses from Ti:sapphire oscillators.

© 2005 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Research Papers

History
Original Manuscript: July 11, 2005
Revised Manuscript: August 11, 2005
Published: August 22, 2005

Citation
C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, "Soliton-based pump�??seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6550


Sort:  Journal  |  Reset  

References

  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591, (2000). [CrossRef]
  2. A. Dubietis, G. Jonušauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440, (1992). [CrossRef]
  3. I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, and J.L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133, (1997). [CrossRef]
  4. X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, "Multiterawatt laser system based on optical parametric chirped pulse amplification," Opt. Lett. 27, 1135, (2002). [CrossRef]
  5. R. Butkus, R. Danielius, R. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700, (2004). [CrossRef]
  6. C.P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator," Opt. Lett. 29, 1369, (2004). [CrossRef] [PubMed]
  7. R.T. Zinkstok, S. Witte, W. Hogervorst, and K.S.E. Eikema, "High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control," Opt. Lett. 30, 78, (2004). [CrossRef]
  8. N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, "Multimillijoule chirped parametric amplification of few-cycle pulses," Opt. Lett. 30, 567-569, (2005). [CrossRef] [PubMed]
  9. S. Witte, R.T. Zinkstok, W. Hogervorst, and K.S.E. Eikema, "Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification," Opt. Express 13, 4903, (2005), <a href=�??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903</a> [CrossRef] [PubMed]
  10. G. Banfi, P. Di Trapani, R. Danielius, A. Piskarskas, R. Righini, and I. Santa, " Tunable femtosecond pulses close to the transform limit from traveling-wave parametric conversion," Opt. Lett. 18, 1547-1579, (1993). [CrossRef] [PubMed]
  11. T. Sosnowski, P.B. Stephens, and T.B. Norris, "Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification," Opt. Lett. 21, 140-142, (1996). [CrossRef] [PubMed]
  12. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, "Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283, (1998). [CrossRef]
  13. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268, (1999). [CrossRef]
  14. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spoerlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B. 71, 457-465, (2000). [CrossRef]
  15. "Fully integrated broadly tunable femtosecond Ytterbium system," <a href=�??http://www.lightcon.com�??>http://www.lightcon.com</a>.
  16. A. Baltuška, T. Fuji, and T. Kobayashi, "Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers," Phys. Rev. Lett. 88, 133901, (2002). [CrossRef] [PubMed]
  17. C. Manzoni, G. Cerullo, and S. De Silvestri, "Ultrabroadband self-phase-stabilized pulses by difference-frequency generation," Opt. Lett. 29, 2668-2670, (2004). [CrossRef] [PubMed]
  18. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 412, 611-615, (2003). [CrossRef]
  19. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288, 635-639, (2000). [CrossRef] [PubMed]
  20. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, and F. Krausz, "Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740-743, (2000). [CrossRef] [PubMed]
  21. M.J.W. Rodwell, D.M. Bloom, and K.J. Weingarten, "Subpicosecond laser timing stabilization," IEEE J. Quantum Electron. 25, 817, (1989). [CrossRef]
  22. W.F. Krupke, "Ytterbium solid-state lasers�?? the first decade," IEEE J. Sel. Top. in Quantum Electron. 6, 1287-1296, (2000). [CrossRef]
  23. A. Baltuška, T. Fuji, and T. Kobayashi, "Visible Pulse Compression to 4 fs by Optical Parametric Amplification and Programmable Dispersion Control," Opt. Lett. 27, 306-308, (2002). [CrossRef]
  24. T.M. Fortier, D.J. Jones, and S.T. Cundiff, "Phase stabilization of an octace-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200, (2003). [CrossRef] [PubMed]
  25. O.D. Mücke, R. Ell, A. Winter, J.-W. Kim, J.R. Birge, L. Matos, and F.X. Kärtner, "Self-Referenced 200 MHz Octave-Spanning Ti:Sapphire Laser with 50 Attosecond Carrier Envelope Phase Jitter," Opt. Express 13, 5163, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5163">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5163</a> [CrossRef] [PubMed]
  26. Z.Y. Wei, Y. Kobayashi, Z.G. Zhang, and K. Torizuka, "Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers," Opt. Lett. 26, 1806-1808, (2001). [CrossRef]
  27. H. Zheng, J. Wu, H. Xu, K. Wu, and E. Wu, "Generation of accurately synchronized pump source for optical parametric chirped pulse amplification," Appl. Phys. B 79, 837-839, (2004). [CrossRef]
  28. T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125, (2003). [CrossRef]
  29. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  30. F.M. Mitschke and L.F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661, (1986). [CrossRef] [PubMed]
  31. E.M. Dianov, A.Y. Karasik, P.V. Mamyshev, A.M. Prokhorov, V.N. Serkin, M.F. Stel'makh, and A.A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297, (1985).
  32. P.S.J. Russell, "Photonic Crystal Fibers," Science 299, 358-362, (2003). [CrossRef] [PubMed]
  33. X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, "Soliton self-frequency shift in a short tapered air�??silica microstructure fiber," Opt. Lett. 26, 358-360, (2001). [CrossRef]
  34. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515, (2003). [CrossRef] [PubMed]
  35. E.E. Serebryannikov, A.M. Zheltikov, N. Ishii, C.Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuška, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B (in press) DOI: 10.1007/s00340-005-1929-8.
  36. A. Poppe, L. Xu, F. Krausz, and C. Spielmann, "Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators," IEEE J. Sel. Top. in Quantum Electron. 4, 179-184, (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited