OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 7017–7027

A virtual optical probe based on localized Surface Plasmon Polaritons

Emiliano Descrovi, Vincent Paeder, Luciana Vaccaro, and Hans-Peter Herzig  »View Author Affiliations


Optics Express, Vol. 13, Issue 18, pp. 7017-7027 (2005)
http://dx.doi.org/10.1364/OPEX.13.007017


View Full Text Article

Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A confined, evanescent nano-source based on the excitation of Surface Plasmon Polaritons (SPP) on structured thin metal films is proposed. With the help of a suitable cavity, we numerically demonstrate that it is possible to trap SPP over a spatial region smaller than the diffraction limit. In particular, the enhanced plasmonic field associated with the zero-order cavity mode can be used as a virtual probe in scanning near-field microscopy systems. The proposed device shows both the advantages of a localized, non-radiating source and the high sensitivity of SPP-based sensors. The lateral resolution is limited by the lateral extension of the virtual probe. Results from simulated scans of small objects reveal that details with feature sizes down to 50 nm can be detected.

© 2005 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

History
Original Manuscript: May 25, 2005
Revised Manuscript: August 25, 2005
Published: September 5, 2005

Citation
Emiliano Descrovi, Vincent Paeder, Luciana Vaccaro, and Hans-Peter Herzig, "A virtual optical probe based on localized Surface Plasmon Polaritons," Opt. Express 13, 7017-7027 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7017


Sort:  Journal  |  Reset

References

  1. L. Novotny, E. J. S´anchez and X. S. Xie, �??Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,�?? Ultramicroscopy 71, 21�??29 (1998). [CrossRef]
  2. E. Betzig and J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, �??Breaking the diffraction barrier: optical microscopy on a nanometric scale,�?? Science 251, 1468�??1470 (1991). [CrossRef]
  3. L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert and H. Heinzelmann, �??Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO 2 tips,�?? J. Microsc. 209, 182�??187 (2003).
  4. L. Vaccaro, L. Aeschimann, U. Staufer and H. P. Herzig, �??Propagation of the electromagnetic field in fully coated near-field optical probes,�?? Appl. Phys. Lett. 83, 584�??586 (2003). [CrossRef]
  5. A. Bouhelier, M. R. Beversluis and L. Novotny, �??Near-field scattering of longitudinal fields,�?? Appl. Phys. Lett. 82, 4596�??4598 (2003). [CrossRef]
  6. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer and H. P. Herzig, �??Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,�?? Appl. Phys. Lett. 85, 5340�??5342 (2004). [CrossRef]
  7. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer and H. P. Herzig, �??Optical properties of microfabricated fully metal-coated near-field probes in collection mode,�?? J. Opt. Soc. Am. A , in press
  8. T. Grosjean and D. Courjon, �??Immaterial tip concept by light confinement,�?? J. Microsc. 202, 273�??278 (2000). [CrossRef]
  9. T. Grosjean, D. Courjon and D. Van Labeke, �??Bessel beams as virtual tips for near-field optics,�?? J. Microsc. 210, 319�??323 (2003). [CrossRef]
  10. Tao Hong, Jia Wang, Liqun Sun and Dacheng Li, �??Numerical simulation analysis of a near-field optical virtual probe,�?? Appl. Phys. Lett. 81, 3452�??3454 (2002). [CrossRef]
  11. W. L. Barnes, A. Dereux and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 424, 824�??830 (2003). [CrossRef]
  12. W. L. Barnes, S. C. Kitson, T. W. Preist and J. R. Sambles, �??Photonic surfaces for surface-plasmon polaritons,�?? J. Opt. Soc. Am. A 14, 1654�??1661 (1997).
  13. S. C. Kitson, W. L. Barnes and J. R. Sambles, �??Full Photonic Band Gap for Surface Modes in the Visible,�?? Phys. Rev. Lett. 77, 1670�??2673 (1996).
  14. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard and J. M. Hvam, �??Waveguiding in Surface Plasmon Polariton Band Gap Structures,�?? Phys. Rev. Lett. 86, 3008�??3011 (2001). [CrossRef]
  15. T. Okamoto, F. H' Dhili and S. Kawata, �??Towards plasmonic band gap laser,�?? Appl. Phys. Lett. 85, 3978�??3970 (2004).
  16. A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida and D. Van Labeke, �??Plasmon optics of structured silver films,�?? Phys. Rev. B 63, 155404-1�??155404-9 (2001).
  17. H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner and F. R. Aussenegg, �??Two-dimensional optics with surface plasmon polaritons,�?? Appl. Phys. Lett. 81, 1762�??1764 (2002). [CrossRef]
  18. D. C. Skigin and R. A. Depine, �??Surface shape resonances and surface plasmon polariton excitations in bottleshaped metallic gratings,�?? Phys. Rev. E 63, 046608-1�??046608-10 (2001).
  19. S. C. Kitson, W. L. Barnes and J. R. Sambles, �??Photonic band gaps in metallic microcavities,�?? J. Appl. Phys. 84, 2399�??2403 (1998). [CrossRef]
  20. K. M. Engenhardt and S. Gregory, �??Surface-plasmon-polariton excitation of optical microcavities and secondharmonic emission,�?? J. Opt. Soc. Am. B 17, 593�??599 (2000).
  21. P. André, F. Charra and M. P. Pileni, �??Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,�?? J. Appl. Phys. 91, 3028�??3036 (2002). [CrossRef]
  22. T. Okamoto, T. Kobayashi and I. Yamaguchi, �??Local plasmon sensor with gold colloid monolayers deposited upon glass subtrates,�?? Opt. Lett. 25, 372�??374 (2000).
  23. C. Rockstuhl, M. Salt and H. P. Herzig, �??Analyzing the scattering properties of coupled metallic nano-particles,�?? J. Opt. Soc. Am. A, 21, 1761�??1768 (2004) [CrossRef]
  24. L. Li, J. Chandezon, G. Granet and J. P. Plumey, �??Rigorous and efficient grating-analysis method made easy for optical engineers,�?? Appl. Opt. 38, 304�??313 (1999).
  25. L. Li, G. Granet, J. P. Plumey and J. Chandezon, �??Some topics in extending the C method to multilayer gratings of different profiles,�?? Pure Appl. Opt. 5, 141�??156 (1996). [CrossRef]
  26. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, �??Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,�?? Phys. Rev. B 54, 6227�??6244 (1996). [CrossRef]
  27. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter and D. J. Nash, �??Photonic gaps in the dispersion of surface plasmons on gratings,�?? Phys. Rev. B 51, 11164�??11167 (1995). [CrossRef]
  28. W.-C. Tan, T. W. Preist, J. R. Sambles, M. B. Sobnack and N. P. Wanstall, �??Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation�??, J. Opt. Soc. Am. A 15, 2365�??2372 (1998).
  29. P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B 6, 4370�??4379 (1972). [CrossRef]
  30. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner and F. R. Aussenegg, �??Surface plasmon micro and nano-optics,�?? J. Microsc. 209, 167�??172 (2002).
  31. B. Fisher, T. M. Fisher and W. Knoll, �??Dispersion of surface plasmons in rectangular, sinusoidal and incoherent silver gratings,�?? J. Appl. Phys. 75, 1577�??1581 (1994). [CrossRef]
  32. E. Silberstein, P. Lalanne, J. P. Hugonin and Q. Cao, �??Use of gratings theories in integrated optics,�?? J. Opt. Soc. Am. A 18, 2865�??2875 (2001)
  33. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau and Y. Chen, �??Short Bragg mirrors with adiabatic modal conversion,�?? Appl. Phys. Lett. 81, 829�??831 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited