OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 19 — Sep. 19, 2005
  • pp: 7683–7698

Electron energy loss and Smith-Purcell radiation in two- and three-dimensional photonic crystals

Tetsuyuki Ochiai and Kazuo Ohtaka  »View Author Affiliations


Optics Express, Vol. 13, Issue 19, pp. 7683-7698 (2005)
http://dx.doi.org/10.1364/OPEX.13.007683


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical description of the electron energy loss and the Smith-Purcell radiation is presented for an electron moving near a two-dimensional photonic crystal slab and a three-dimensional woodpile photonic crystal. The electron energy loss and the Smith-Purcell radiation spectra are well correlated with the photonic band structures of these crystals and thus can be used as a probe of them. In particular, there is a selection rule concerning the symmetries of the photonic band modes to be excited when the electron moves in a mirror plane of the crystals. In the woodpile, a highly directional Smith-Purcell radiation is realized by using the planar defect mode inside the complete band gap.

© 2005 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4170) Optical devices : Multilayers
(300.2140) Spectroscopy : Emission

ToC Category:
Research Papers

History
Original Manuscript: August 11, 2005
Revised Manuscript: September 14, 2005
Published: September 19, 2005

Citation
Tetsuyuki Ochiai and Kazuo Ohtaka, "Electron energy loss and Smith-Purcell radiation in two- and three-dimensional photonic crystals," Opt. Express 13, 7683-7698 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7683


Sort:  Journal  |  Reset  

References

  1. J. B. Pendry and L. Martín-Moreno, �??Energy-loss by charged-particles in complex media,�?? Phys. Rev. B 50, 5062�??5073 (1994). [CrossRef]
  2. F. J. García de Abajo and L. A. Blanco, �??Electron energy loss and induced photon emission in photonic crystals,�?? Phys. Rev. B 67, 125108 (2003). [CrossRef]
  3. F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique,�??Cherenkov effect as a probe of photonic nanostructures,�?? Phys. Rev. Lett. 91, 143902 (2003). [CrossRef]
  4. F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, �??Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,�?? Phys. Rev. B 68, 205105 (2003). [CrossRef]
  5. T. Ochiai and K. Ohtaka, �??Relativistic electron energy loss and induced radiation emission in two-dimensional metallic photonic crystals. I. Formalism and surface plasmon polariton,�?? Phys. Rev. B 69, 125106 (2004). [CrossRef]
  6. T. Ochiai and K. Ohtaka, �??Relativistic electron energy loss and induced radiation emission in two-dimensional metallic photonic crystals. II. Photonic band effects,�?? Phys. Rev. B 69, 125107 (2004). [CrossRef]
  7. S. J. Smith and E. M. Purcell, �??Visible light from localized surface charges moving across a grating,�?? Phys. Rev. 92, 1069 (1953). [CrossRef]
  8. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R.Wendt, G. A. Vawter,W. Zubrzycki, H. Hou, and A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983�??986 (2000). [CrossRef] [PubMed]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths,�?? Nature 394, 251�??253 (1998). [CrossRef]
  10. D. M. Whittaker and I. S. Culshaw, �??Scattering-matrix treatment of patterned multilayer photonic structures,�?? Phys. Rev. B 60, 2610�??2618 (1999). [CrossRef]
  11. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, �??Quasiguided modes and optical properties of photonic crystal slabs,�?? Phys. Rev. B 66, 045102 (2002). [CrossRef]
  12. B. Gralak, S. Enoch, and G. Tayeb, �??From scattering or impedance matrices to Bloch modes of photonic crystals,�?? J. Opt. Soc. Am. A 19, 1547�??1554 (2002). [CrossRef]
  13. Z. Y. Li and L. L. Lin, �??Photonic band structures solved by a plane-wave-based transfer-matrix method,�?? Phys. Rev. E 67, 046607 (2003). [CrossRef]
  14. D. E. Wortman, R. P. Leavitt, H. Dropkin, and C. A. Morrison, �??Generation of millimeter-wave radiation by means of a Smith-Purcell free-electron laser,�?? Phys. Rev. A 24, 1150�??1153 (1981). [CrossRef]
  15. A. Gover, P. Dvorkis, and U. Elisha, �??Angular radiation-pattern of Smith-Purcell radiation,�?? J. Opt. Soc. Am. B 1, 723�??728 (1984). [CrossRef]
  16. I. Shih, W. W. Salisbury, D. L. Masters, and D. B. Chang, �??Measurements of Smith-Purcell radiation,�?? J. Opt. Soc. Am. B 7, 345�??350 (1990). [CrossRef]
  17. G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, �??First observation of Smith-Purcell radiation from relativistic electrons,�?? Phys. Rev. Lett. 69, 1761�??1764 (1992). [CrossRef] [PubMed]
  18. O. Haeberlé, P. Rullhusen, J. M. Salomé, and N. Maene, �??Calculations of Smith-Purcell radiation generated by electrons of 1-100 Mev,�?? Phys. Rev. E 49, 3340�??3352 (1994). [CrossRef]
  19. K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, �??Observation of coherent Smith-Purcell radiation from short-bunched electrons,�?? Phys. Rev. E 51, R5212�??R5215 (1995). [CrossRef]
  20. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, �??Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunch beam of relativistic electrons,�?? Phys. Rev. E 57, 1061�??1074 (1998). [CrossRef]
  21. F. J. García de Abajo, �??Smith-Purcell radiation emission in aligned nanoparticles,�?? Phys. Rev. E 61, 5743�??5752 (2000). [CrossRef]
  22. K. Ohtaka and S. Yamaguti, �??Theoretical study of the Smith-Purcell effect involving photonic crystals,�?? Opt. Spectrosc. 91, 477�??483 (2001). [CrossRef]
  23. S. Yamaguti, J. Inoue, O. Haeberlé, and K. Ohtaka, �??Photonic crystals versus diffraction gratings in Smith-Purcell radiation,�?? Phys. Rev. B 66, 195202 (2002). [CrossRef]
  24. K. Yamamoto, R. Sakakibara, S. Yano, Y. Segawa, Y. Shibata, K. Ishi, T. Ohsaka, T. Hara, Y. Kondo, H. Miyazaki, F. Hinode, T. Matsuyama, S. Yamaguti, and K. Ohtaka, �??Observation of millimeter-wave radiation generated by the interaction between an electron beam and a photonic crystal,�?? Phys. Rev. E 69, 045601 (2004). [CrossRef]
  25. S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, �??Control of light emission by 3D photonic crystals,�?? Science 305, 227�??229 (2004). [CrossRef] [PubMed]
  26. M. Okano and S. Noda, �??Analysis of multimode point-defect cavities in three-dimensional photonic crystals using group theory in frequency and time domains,�?? Phys. Rev. B 70, 125105 (2004). [CrossRef]
  27. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, Science 299, 368�??371 (2003). [CrossRef] [PubMed]
  28. J. Pendry, Low Energy Electron Diffraction (Academic, London, 1974).
  29. T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, �??Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,�?? J. Appl. Phys. 84, 6299�??6304 (1998). [CrossRef]
  30. T. Ochiai and K. Sakoda, �??Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,�?? Phys. Rev. B 63, 125107 (2001). [CrossRef]
  31. T. Ochiai and K. Sakoda, �??Nearly free-photon approximation for two-dimensional photonic crystal slabs,�?? Phys. Rev. B 64, 045108 (2001). [CrossRef]
  32. K. Ohtaka, J. Inoue, and S. Yamaguti, �??Derivation of the density of states of leaky photonic bands,�?? Phys. Rev. B 70, 035,109 (2004). [CrossRef]
  33. P. Paddon and J. F. Young, �??Two-dimensional vector-coupled-mode theory for textured planar waveguides,�?? Phys. Rev. B 61, 2090�??2101 (2000). [CrossRef]
  34. B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, �??Theoretical study of photonic band gaps in woodpile crystals,�?? Phys. Rev. E 67, 066601 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited