OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 20 — Oct. 3, 2005
  • pp: 8184–8197

Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography

Enrique J. Fernández and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 13, Issue 20, pp. 8184-8197 (2005)
http://dx.doi.org/10.1364/OPEX.13.008184


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) enables visualization of the living human retina with unprecedented high axial resolution. The transverse resolution of existing OCT approaches is relatively modest as compared to other retinal imaging techniques. In this context, the use of adaptive optics (AO) to correct for ocular aberrations in combination with OCT has recently been demonstrated to notably increase the transverse resolution of the retinal OCT tomograms. AO is required when imaging is performed through moderate and large pupil sizes. A fundamental difference of OCT as compared to other imaging techniques is the demand of polychromatic light to accomplish high axial resolution. In ophthalmic OCT applications, the performance is therefore also limited by ocular chromatic aberrations. In the current work, the effects of chromatic and monochromatic ocular aberrations on the quality of retinal OCT tomograms, especially concerning transverse resolution, sensitivity and contrast, are theoretically studied and characterized. The repercussion of the chosen spectral bandwidth and pupil size on the final transverse resolution of OCT tomograms is quantitatively examined. It is found that losses in the intensity of OCT images obtained with monochromatic aberration correction can be up to 80 %, using a pupil size of 8 mm diameter in combination with a spectral bandwidth of 120 nm full width at half maximum for AO ultrahigh resolution OCT. The limits to the performance of AO for correction of monochromatic aberrations in OCT are established. The reduction of the detected signal and the resulting transverse resolution caused by chromatic aberration of the human eye is found to be strongly dependent on the employed bandwidth and pupil size. Comparison of theoretical results with experimental findings obtained in living human eyes is also provided.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.2990) Imaging systems : Image formation theory
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(350.5730) Other areas of optics : Resolution

ToC Category:
Research Papers

History
Original Manuscript: August 25, 2005
Revised Manuscript: September 23, 2005
Published: October 3, 2005

Citation
Enrique Fernández and Wolfgang Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-8184


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultrahighresolution ophthalmic optical coherence tomography,�?? Nature Medicine 7, 502-507 (2001). [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-1223 (1999). #8582 - $15.00 USD Received 25 August 2005; revised 23 September 2005; accepted 23 September 2005 [CrossRef]
  4. W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  5. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, �??Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 28, 905-907 (2003). [CrossRef] [PubMed]
  6. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, �??Monochromatic aberrations of the human eye in a large population,�?? J. Opt. Soc. Am. A 18, 1793�??1803 (2001). [CrossRef]
  7. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, �??Statistical variation of aberration structure and image quality in a normal population of healthy eyes,�?? J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  8. F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, �??Ocular wavefront aberration statistics in a normal young population,�?? Vis. Res. 42, 1611�??1617 (2002). [CrossRef] [PubMed]
  9. E. J. Fernández, I. Iglesias, and P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, 746-748 (2001). [CrossRef]
  10. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, �??Performance of the Rochester 2nd generation adaptive optics system for the eye,�?? Opt. Express 8, 631�??643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.</a> [CrossRef] [PubMed]
  11. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, �??Adaptive optics scanning laser ophthalmoscopy,�?? Opt. Express 10, 405-412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a> [PubMed]
  12. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye. In:" V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto (Eds.), Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  13. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, �??Adaptive optics ultrahigh resolution optical coherence tomography,�?? Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  14. E. J. Fernández and P. Artal, �??Membrane deformable mirror for adaptive optics: performance limits in visual optics,�?? Opt. Express 11, 1056-1069 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1056">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1056</a> [CrossRef] [PubMed]
  15. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, �??Adaptive optics spectral optical coherence tomography for imaging the living retina,�?? Opt. Express 13, 4792-4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792.</a> [CrossRef] [PubMed]
  16. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, �??Three Dimensional Adaptive Optics Ultrahigh-Resolution Optical Coherence Tomography using a liquid crystal spatial light modulator,�?? Vis. Res. In press (2005)
  17. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, �??Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,�?? Opt. Express 13, 400- 409 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-400.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-400.</a> [CrossRef] [PubMed]
  18. S. Kimura and T. Wilson, �??Confocal scanning optical microscope using single-mode fiber for signal detection,�?? App. Opt. 30, 2143-2150 (1991). [CrossRef]
  19. T. Wilson, Ed., Confocal Microscopy (Academic, London, 1990).
  20. T. Wilson and A. R. Carlini, �??Size of the detector in confocal imaging systems,�?? Opt. Lett. 12, 227-229 (1987). [CrossRef] [PubMed]
  21. A. G. Podoleanu and D. A. Jackson, �??Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,�?? Appl. Opt. 38, 2116-2127 (1999). [CrossRef]
  22. A. G. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, �??Sequential optical coherence tomography and confocal imaging,�?? Opt. Lett. 29, 364-366 (2004). [CrossRef] [PubMed]
  23. D. A. Atchinson and G. Smith, Optics of the Human Eye (Oxford: Butterworth-Heinemann, 2000).
  24. A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, 1998).
  25. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic press, London,1984).
  26. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, �??Odd aberrations and double-pass measurements of retinal image quality,�?? J. Opt. Soc. Am. A 12, 195�??201 (1995). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics (7th ed., Pergamon, Oxford, 1999).
  28. W. S. Stiles, �??The luminous efficiency of rays entering the eye pupil at different points,�?? Proc. R. Soc. London, Ser. B 112, 428-450 (1933). [CrossRef]
  29. A. van Meeteren, �??Calculations on the optical modulation function of the human eye for white light,�?? Opt. Acta 21, 395-412 (1972). [CrossRef]
  30. P. Artal, �??Incorporation of directional effects of the retina into computations of the modulation transfer function of human eyes,�?? J. Opt. Soc. Am. A 6, 1941-1944 (1989). [CrossRef] [PubMed]
  31. R. J. Noll, �??Zernike polynomials and atmospheric turbulence,�?? J. Opt. Soc. Am. 66, 207- 211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited