OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8406–8423

Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide

Zhengling Wang, Meng Dai, Jianping Yin, and Zhengling Wang  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8406-8423 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new scheme to guide cold atoms (or molecules) using a blue-detuned TE01 doughnut mode in a hollow metallic waveguide (HMW), and analyze the electromagnetic field distributions of various modes in the HMW. We calculate the optical potentials of the TE01 doughnut mode for three-level atoms using dressed-atom approach, and find that the optical potential of the TE01 mode is high enough to guide cold atoms released from a standard magneto-optical trap. Our study shows that when the input laser power is 0.5W and its detuning is 3GHz, the guiding efficiency of cold atoms in the straight HMW with a hollow radius of 15 μm can reach 98%, and this guiding efficiency will be almost unchanged with the change of curvature radius R of the bent HMW as R > 2cm, which is a desirable scheme to do some atom-optics experiments or realize a computer-controlled atom lithography with an arbitrary pattern. We also analyze the losses of the guided atoms in the HMW due to the spontaneous emission and background thermal collisions and briefly discuss some potential applications of our guiding scheme in atom and molecule optics.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Research Papers

Original Manuscript: July 22, 2005
Revised Manuscript: September 30, 2005
Published: October 17, 2005

Zhengling Wang, Meng Dai, and Jianping Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13, 8406-8423 (2005)

Sort:  Journal  |  Reset  


  1. J. Yin, W. Gao, and Y. Zhu, �??Generation of dark hollow beams and their applications,�?? Prog. Opt. 45, 119-204 (2003). [CrossRef]
  2. J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, �??Optical potential for atom guidance in a dark hollow laser beam,�?? J. Opt. Soc. Am. B 15, 25-33 (1998). [CrossRef]
  3. . J. Yin, Y. Zhu, W. Jhe, and Y. Wang, �??Atom guiding and cooling in a dark hollow laser beam,�?? Phys. Rev. A 58, 509-513 (1998). [CrossRef]
  4. X. Xu, K. Kim, W. Jhe, N. Kwon, �??Efficient optical guiding of trapped cold atoms by a hollow laser beam,�?? Phys. Rev. A 63, 063401 (2001). [CrossRef]
  5. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, �?? Guiding and cooling of cold atoms in dipole guide,�?? Opt. Commun. 166, 199-209 (1999). [CrossRef]
  6. B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, �??Guiding of cold atoms by a red-detuned laser beam of moderate power,�?? New J. Phys. 4, 69.1-69.10 (2002). [CrossRef]
  7. M. A. Ol�??Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, �??Laser guiding of atoms in a hollow optical fiber,�?? Opt. Commun. 98, 77-79 (1993). [CrossRef]
  8. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, �??Laser-guided atoms in hollow-core optical fibers,�?? Phys. Rev. Lett. 75, 3253-3256 (1995). [CrossRef] [PubMed]
  9. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, �??Optical-dipole-force fiber guiding and heating of atoms,�?? Phys. Rev. A 55, 3684-3693 (1997). [CrossRef]
  10. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648-R651 (1996). [CrossRef] [PubMed]
  11. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, �??Laser spectroscopy of atoms guiding by evanescent waves in micron-sided hollow optical fibers,�?? Phys. Rev. Lett. 76, 4500-4503 (1996). [CrossRef] [PubMed]
  12. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997). [CrossRef]
  13. E. A. J. Marcatili, and R. A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transition and lasers,�?? Bell Syst. Tech. J. 43, 1783-1809 (1964).
  14. E. Garmire, T. McMahon, and M. Bass, �??Propagation of infrared light in flexible hollow waveguide,�?? Appl. Opt. 15, 145-150 (1976). [CrossRef] [PubMed]
  15. Y. Xia, and J. Yin, �??Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics,�??J. Opt. Soc. Am. B 22, 529-536 (2005). [CrossRef]
  16. R. L. Abrams, and A. N. Chester, �??Resonator theory for hollow waveguide lasers,�?? Appl. Opt. 13, 2117-2125 (1974). [CrossRef] [PubMed]
  17. M. Saito, S. Sato, and M. Miyagi, �??Loss characteristics of infrared hollow waveguides in multimode transmission,�?? J. Opt. Soc. Am. A 10, 277-282 (1993). [CrossRef]
  18. M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguide for infrared transition,�?? IEEE J. Lightwave Technol. 2, 116-126 (1984). [CrossRef]
  19. V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S.L etokhov, �??Increase of the atomic phase density in a hollow laser waveguide,�?? JETP Lett. 63, 802-807 (1996). [CrossRef]
  20. J. Yin, Y. Zhu, and Y. Wang, �??Evanescent light�??wave atomic funnel: A tanden hollow-fiber, hollow-beam approach,�?? Phys. Rev. A 57, 1957-1966 (1998). [CrossRef]
  21. J. Yin, Y.Zhu, and Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998). [CrossRef]
  22. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995). [CrossRef]
  23. Yu.B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface trap for Cs atoms based on evanescent-wave cooling,�?? Phys. Rev. Lett.79, 2225-2228 (1997). [CrossRef]
  24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, �??Guiding cold atoms in a hollow laser beam,�?? Phys. Rev. A 60, 4796-4804 (1999). [CrossRef]
  25. J. Yin, and Y. Zhu, �??Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre,�?? Opt. Commun. 152, 421-428 (1998). [CrossRef]
  26. X. Xu, Y. Wang, and W. Jhe, �??Theory of atom guidance in a hollow laser beam: dressed-atom approach,�?? J. Opt. Soc. Am. B 17, 1039-1050 (2000). [CrossRef]
  27. H. Nha, and W. Jhe, �??Sisphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997). [CrossRef]
  28. J. Dalibard, and C. Cohen-Tannoudji, �??Dressed-atom approach to atomic motion in laser light: the dipole force revisited,�?? J. Opt. Soc. Am. B 2, 1707-1720 (1985). [CrossRef]
  29. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-velocity intense source of atoms from a magneto-optical trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996). [CrossRef] [PubMed]
  30. H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, �??Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition,�?? Appl. Phys. Lett. 70 2496-2498 (1997). [CrossRef]
  31. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, �??Generation of a dark hollow beam by a small hollow fiber,�?? Opt. Commun. 138, 287-292 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited