OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8532–8546

Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging

Robert J. Zawadzki, Steven M. Jones, Scot S. Olivier, Mingtao Zhao, Bradley A. Bower, Joseph A. Izatt, Stacey Choi, Sophie Laut, and John S. Werner  »View Author Affiliations


Optics Express, Vol. 13, Issue 21, pp. 8532-8546 (2005)
http://dx.doi.org/10.1364/OPEX.13.008532


View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have combined Fourier-domain optical coherence tomography (FD-OCT) with a closed-loop adaptive optics (AO) system using a Hartmann-Shack wavefront sensor and a bimorph deformable mirror. The adaptive optics system measures and corrects the wavefront aberration of the human eye for improved lateral resolution (~4 μm) of retinal images, while maintaining the high axial resolution (~6 μm) of stand alone OCT. The AO-OCT instrument enables the three-dimensional (3D) visualization of different retinal structures in vivo with high 3D resolution (4×4×6 μm). Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Research Papers

History
Original Manuscript: August 15, 2005
Revised Manuscript: October 4, 2005
Published: October 17, 2005

Citation
Robert Zawadzki, Steven Jones, Scot Olivier, Mingtao Zhao, Bradley Bower, Joseph Izatt, Stacey Choi, Sophie Laut, and John Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8532


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Flotte, K. Gregory, C.A. Puliafito, �??Optical Coherence Tomography,�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C.K. Hitzenberger, G. Kamp, Y. Elzaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt. Commun. 117, 43-48 (1995). [CrossRef]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, �??In Vivo human retinal imaging by fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  4. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, J.F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>. [CrossRef] [PubMed]
  5. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  6. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, �??Performance of Fourier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>. [CrossRef] [PubMed]
  7. M.A. Choma, M.V. Sarunic, Ch. Yang, J.A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>. [CrossRef] [PubMed]
  8. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, �??Real-time assessment of retinal blood flow with ultrafast acqusition by color Doppler Fourier domain coherence tomography,�?? Opt. Express 11, 3116-3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>. [CrossRef] [PubMed]
  9. Y. Yasuno, S. Makita, Y. South, M. Itoh, and T. Yatagai, �??Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,�?? Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  10. B.H. Park, M.C. Pierce, B.Cense, S.-H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer �??Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,�?? Opt. Express 13, 3931-3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11</a>. [CrossRef] [PubMed]
  11. W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kartner, J.S. Schuman, and J.G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Med. 7, 502�??507 (2000).
  12. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. F. Fercher, �??Ultrahigh resolution Fourier domain optical coherence tomography,�?? Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>. [CrossRef] [PubMed]
  13. B. Cense, N.A. Nassif, T.C. Chen, M.C. Pierce, S.-H. Yun, B. H. Park, B.E. Bouma, G.J. Tearney, J.F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a> [CrossRef] [PubMed]
  14. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2422 (2004),<a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>. [CrossRef] [PubMed]
  15. D.T. Miller, J. Qu, R.S. Jonnal, and K. Thorn, �??Coherence gating and adaptive optics in the eye,�?? in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  16. B. Hermann, E.J. Fernandez, A. Unterhubner, H. Sattmann, A.F. Fercher, and W. Drexler, P.M. Prieto and P. Artal, �??Adaptive-optics ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  17. Y. Zhang, J. Rha, R.S. Jonnal, D.T. Miller, �??Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,�?? Opt. Express 13, 4792-4811 (2005), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>. [CrossRef] [PubMed]
  18. J. Liang, D.R. Williams and D.T. Miller, �??Supernormal vision and high-resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884 (1997). [CrossRef]
  19. A. Roorda, F. Romero-Borja, W.J. Donnelly III, H. Queener, T.J. Hebert, and M.C.W. Campbell, �??Adaptive optics scanning laser ophthalmoscopy,�?? Opt. Express 10, 405-412 (2002), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405>http://www.opticsexpress.org/abstract.cfm?URI-OPEX-10-9-405</a>. [PubMed]
  20. J. Carroll, D.C. Gray, A.Roorda, D.R. Williams, �??Recent advances in retinal imaging with adaptive optics,�?? Opt. Photon. News 16, 36-42 (2005). [CrossRef]
  21. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T.J. Hebert, �??Optical slicing of human retinal tissue in vivo with adaptive optics scanning laser ophthalmoscope,�?? Appl. Opt. 44, 4032-4040 (2005). [CrossRef] [PubMed]
  22. R.J. Zawadzki, B.A. Bower, M. Zhao, M. Sarunic, S. Laut, J.S. Werner and J.A. Izatt, �??Exposure time dependence of image quality in high-speed retinal in vivo Fourier-domain OCT,�?? in Ophthalmic Technologies XV, F. Manns, P.G. Soederberg, A. Ho, B.E. Stuck, M. Belkin, eds., Proc. SPIE 5688, 45-52 (2005). [CrossRef]
  23. ANSI, American National Standard for the Safe use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).
  24. D.A. Horsley, H. Park, S.P. Laut, J.S. Werner, �??Characterization for vision science application of bimorph deformable mirror using phase-shifting interferometry,�?? in Ophthalmic Technologies XV, F. Manns, P.G. Soederberg, A. Ho, B.E. Stuck, M. Belkin, eds., Proc. SPIE 5688, 133-143 (2005). [CrossRef]
  25. E. Dalimier, Ch. Dainty, �??Comparative analysis of deformable mirrors for ocular adaptive optics,�?? Opt. Express 13, 4275-4285 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275</a>. [CrossRef] [PubMed]
  26. R.K. Tyson, Principle of Adaptive Optics (Academic Press, inc., 1991), Chap. 7.
  27. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, Ch. Dainty, �??Benefit of higher closed-loop bandwidths in ocular adaptive optics,�?? Opt. Express 11, 2597-2605 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>. [CrossRef] [PubMed]
  28. R.W. Rodieck, The Vertebrate Retina (W.H. Freeman, San Francisco, 1973).
  29. E.J. Fernández, A. Unterhuber, P.M. Prieto, B. Hermann, W. Drexler, P. Artal, �??Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,�?? Opt. Express 13, 400-409 (2005), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-400>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-400</a>. [CrossRef] [PubMed]
  30. J.I. Yellott Jr, �??Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing,�??Vision Res. 22, 1205-1210 (1982). [CrossRef] [PubMed]
  31. Ch.A. Curcio, K.R. Sloan, R.E. Kalina, A.E. Hendrickson �??Human Photoreceptor Topography,�?? J Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1380 KB)     
» Media 2: AVI (5277 KB)     
» Media 3: AVI (1337 KB)     
» Media 4: AVI (14736 KB)     
» Media 5: AVI (1860 KB)     
» Media 6: AVI (7542 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited