OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 21 — Oct. 17, 2005
  • pp: 8571–8583

In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms

B. Wassermann, A. Kummrow, K.T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. MÖller, R. Macdonald, P. M. Schlag, and H. Rinneberg.  »View Author Affiliations

Optics Express, Vol. 13, Issue 21, pp. 8571-8583 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A valuable method is described to analyze time-domain optical mammograms measured in the slab-like geometry of the slightly compressed female breast with a method based on linear perturbation theory including edge correction. Perturbations in scattering and absorption coefficients were mapped applying a computationally efficient point model.

© 2005 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(290.7050) Scattering : Turbid media

ToC Category:
Research Papers

Original Manuscript: June 17, 2005
Revised Manuscript: September 29, 2005
Published: October 17, 2005

Bernhard Wassermann, A. Kummrow, K. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005)

Sort:  Journal  |  Reset  


  1. E.B. de Haller, "Time-resolved transillumination and optical tomography," J. Biomed. Opt. 1, 7-17 (1996). [CrossRef]
  2. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, "Time-gated transillumination, of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994). [CrossRef] [PubMed]
  3. J.B. Fishkin, P.T.C. So, A.E. Cerussi, S. Fantini, M.A. Franceschini, E. Gratton, "Frequency domain method for measuring spectral properties in multiple-scattering media: methemoglobin spectra in a tissuelike phantom," Appl. Opt. 34, 1143-1155 (1995). [CrossRef] [PubMed]
  4. H. Heusmann, J. Kölzer, G. Mitic, "Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy, �??J. Biomed. Opt. 1, 425-434 (1996). [CrossRef]
  5. S. Fantini, S.A. Franceschini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, K.T. Moesta, P.M. Schlag, M. Kaschke, "Frequency-domain optical mammography: Edge effects correction," Med. Phys. 23, 149-157 (1996). [CrossRef] [PubMed]
  6. J.B. Fishkin, O. Coquoz, E.R. Anderson, M. Brenner, B.J. Tromberg, "Frequency domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997). [CrossRef] [PubMed]
  7. M.A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, M. Kaschke, "Freuqency-domain techniques enhance optical mammography, Initial clinical results,�?? Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  8. B.W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  9. D. Grosenick, H. Wabnitz, H.H. Rinneberg, K.T. Moesta, P.M Schlag, "Development of a time-domain optical mammograph and first in-vivo applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Toricelli, G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of the human breast," Appl. Phys. Lett. 74, 874-876 (1999). [CrossRef]
  11. A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A.J. Berger, D. Hsiang, J. Butler, R.F. Holcomb, B.J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  12. D. Grosenick, K.T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P.M. Schlag, H.H. Rinneberg, " Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  13. A. Pifferi, P. Taroni, A. Toricelli, F. Messina, R. Cubeddu, �??Four-wavelength, time-resolved optical mammography in the 680-980 nm range,�?? Opt. Lett. 28, 1138-1140 (2003). [CrossRef] [PubMed]
  14. D.B. Jakubowski, A.E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B.J. Tromberg, "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative optical spectroscopy: a case study," J. Biomed. Opt. 9, 230-238 (2004). [CrossRef] [PubMed]
  15. B.W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T.D. Tosteson, S.P. Poplack, K.D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  16. P. Taroni, G. Danesini, A. Toricelli, A. Pifferi,L. Spinelli, R. Cubeddu, "Clinical trial of time-resolved optical mammography at 4 wavelengths between 683 and 975 nm," J. Biomed. Opt. 9, 464-473 (2004). [CrossRef] [PubMed]
  17. B.W. Pogue, T.O. McBride, U.L. Osterberg, K. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]
  18. S.R. Arridge, Inverse Problems (15, R41-R93 ,1999).
  19. J.C. Hebden, H. Veenstra, H. Dehghani, E.M.C. Hillman, M. Schweiger, S.R. Arridge, D.T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278- 3287 (2001). [CrossRef]
  20. V. Ntziachristos, A.G. Yodh, M. Schnall, B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," Proc. Natl. Acad. Sci. 97, 2767-2772 (2000). [CrossRef] [PubMed]
  21. B. Brooksby, S. Jiang, H. Dehghani, B.W. Pogue, K.D. Paulsen, C. Kogel, M. Doyley, J.B. Weaver, S.P. Poplack, "Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instr. 75, 5262- 5270 (2004). [CrossRef]
  22. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, "Use of nonlinear perturbation approach for invivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Exp. 11, 853-867 (2003). [CrossRef]
  23. L. Spinelli , A. Torircelli, A. Pifferi, P. Taroni, R. Cubeddu, "Experimental test of a novel perturbation model for time resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003). [CrossRef] [PubMed]
  24. D. Grosenick, H. Wabnitz, K.T. Moesta, J. Mucke, M. Möller, C. Stroszcynski, J. Stö�?el, B. Wassermann, P.M. Schlag, and H.H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004). [CrossRef] [PubMed]
  25. S.R. Arridge, P. van der Zee, M. Cope, D.T Delpy , "Reconstruction methods for infra-red absorption imaging," in Proc. SPIE vol. 1431, "Time resolved Spectroscopy and Imaging of Tissues," 204-215 (1991). [CrossRef]
  26. J.C. Hebden, S.R. Arridge, "Imaging through scattering media by the use of an analytical method of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996). [CrossRef] [PubMed]
  27. M. Morin, S. Verreault, A. Mailloux, J. Frechette, S. Chatingy, Y. Painchaud, P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000). [CrossRef]
  28. S. Carraresi, T.S.M. Shatir, F. Martelli, G. Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001). [CrossRef]
  29. S.R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995). [CrossRef] [PubMed]
  30. S. Feng, F.-A. Zeng, B. Chance, "Photon migration in the presence of a single defect: a perturbation analysis," Appl. Opt. 34, 3826-3837 (1995). [CrossRef] [PubMed]
  31. W.H. Press, S.A. Teukolsky, V.T. Vetterling, B.P. Flannery, Numerical Recipes in C, (Cambridge University Press, 1997).
  32. D. Grosenick, K.Th. Moesta, M. Möller, J. Mucke, H. Wabnitz, J. Gebauer, C. Stroszcynski, B. Wassermann, P.M. Schlag, H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef] [PubMed]
  33. D. Grosenick, H. Wabnitz, K.Th. Moesta, , J. Mucke, P.M. Schlag, H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited