OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 22 — Oct. 31, 2005
  • pp: 9115–9124

The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro  »View Author Affiliations

Optics Express, Vol. 13, Issue 22, pp. 9115-9124 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of numerical simulations of the modal properties of Photonic Band Gap Fibers (PBGFs) in which a structural distortion of the silica ring surrounding the air core is gradually introduced. We demonstrate that surface modes supported within such fibers are very sensitive to structural distortions, and that any asymmetric change in the structure can break their degeneracy resulting in associated changes in the anticrossing behavior of the orthogonally polarized core modes, and the development of polarization dependent transmission properties. Our results provide insight into recent experimental observations of wavelength dependent PDL and birefringence in PBGFs.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(260.1440) Physical optics : Birefringence

ToC Category:
Research Papers

Original Manuscript: September 8, 2005
Revised Manuscript: October 25, 2005
Published: October 31, 2005

F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)

Sort:  Journal  |  Reset  


  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537�??1539, (1999). [CrossRef] [PubMed]
  2. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702�??1704, (2003). [CrossRef] [PubMed]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Ultimate low loss of hollow-core photonic crystal fibres,�?? Opt. Express 13, 236�??244, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236</a> [CrossRef] [PubMed]
  4. T. J. Stephens, R. R. Maier, J. S. Barton and J. D. C. Jones, �??Fused silica hollow-core photonic crystal fibre for mid-infrared transmission,�?? presented at Conference on Lasers and Electro-Optics (CLEO); Postconference Digest, CPDD4, 16-21 May 2004, San Francisco, CA, USA, (2004).
  5. K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photonics Technol. Lett. 14, 1291�??1293, (2002). [CrossRef]
  6. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A.Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K.W. Koch, �??Highly birefringent hollow-core photonic bandgap fiber,�?? Opt. Express 12, 3888�??3893 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a> [CrossRef] [PubMed]
  7. M. S. Alam, K. Saitoh, and M. Koshiba, �??High group birefringence in air-core photonic bandgap fibers,�?? Opt. Lett. 30, 824�??826, (2005). [CrossRef] [PubMed]
  8. M. T. Steel, T. P. White, C. M. De Sterke, R. C. McPhedran, and L. C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488�??90 (2001). [CrossRef]
  9. G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, �??Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,�?? Opt. Express 11, 1613�??1620 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a> [CrossRef] [PubMed]
  10. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, �??Dispersion tailoring and compensation by modal interactions in omniguide fibers,�?? Opt. Express 11, 1175�??1196, (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175</a> [CrossRef] [PubMed]
  11. G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, �??Hollow core photonic crystal fibers for beam delivery,�?? Opt. Express 12, 1477�??1484, (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477 ">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477</a> [CrossRef] [PubMed]
  12. M. Wegmuller, M. Legre, N. Gisin, T. P. Hansen, C. Jacobsen, and J. Broeng, �??Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,�?? Opt. Express 13, 1457�??1467 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1457">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1457</a> [CrossRef] [PubMed]
  13. N. A. Mortensen and M. D. Nielsen, �??Modeling of realistic cladding structures for air-core photonic bandgap fibers,�?? Opt. Lett. 29, 349�??351 (2004). [CrossRef] [PubMed]
  14. K. Saitoh, N. A. Mortensen, and M. Koshiba, �??Air-core photonic band-gap fibers: the impact of surface modes,�?? Opt. Express 12, 394�??400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-3</a> [CrossRef] [PubMed]
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657�??659, (2003 [CrossRef] [PubMed]
  16. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, �??Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,�?? Opt. Express 13, 3728�??3736, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a> [CrossRef] [PubMed]
  17. P. R. McIsaac, �??Symmetry-induced modal characteristics of uniform waveguides. i. summary of results,�?? IEEE Trans. Microwave Theory Tech. 23, 421�??429, (1975). [CrossRef]
  18. M. Koshiba and K. Saitoh, �??Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,�?? Appl. Opt. 42, 6267�??6275, (2003). [CrossRef] [PubMed]
  19. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A.West, P. Zhang, and K. W. Koch, �??Surface modes and loss in air-core photonic band-gap fibers,�?? in Photonic Crystal Materials and Devices, Proc. SPIE 5000, 161�??174, (2003). [CrossRef]
  20. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Surface modes in air-core photonic band-gap fibers,�?? Opt. Express 12, 1485�??1496 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485,/a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited