OSA's Digital Library

Optics Express

Optics Express

  • Editor: Micha
  • Vol. 13, Iss. 23 — Nov. 14, 2005
  • pp: 9492–9501

Towards optimum sample-probe-spectrometer system design by adjusting receiving fiber end face position and probe-membrane sample separation

Jianjun Ma, Wojtek J. Bock, Zhiyuan Wang, and Wenhui Hao  »View Author Affiliations


Optics Express, Vol. 13, Issue 23, pp. 9492-9501 (2005)
http://dx.doi.org/10.1364/OPEX.13.009492


View Full Text Article

Enhanced HTML    Acrobat PDF (143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-fiber probe interrogated by a spectrometer for the measurement of fluorescence emitted from a thin layer of membrane is investigated. For a specific spectrometer, an optimum fiber probe design exists to maximize the sample-probe-spectrometer system performance. In this paper, for the first time, we report that by separating the front end faces of the receiving and illuminating fibers, spectrum resolution and fluorescence collection capability may be simultaneously enhanced. Theoretical and experimental results reveal that such an optimized system collects more emitted rays with incident angles that fall within the full acceptance angle of the slit. The relative collection efficiency increases to 63% when the membrane is positioned very close to the probe tip. By adjusting positions of the receiving fiber and the membrane sample to an optimized combination, we also prove that the optimum performance of spectrometer can be achieved.

© 2005 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Research Papers

History
Original Manuscript: September 6, 2005
Revised Manuscript: October 31, 2005
Published: November 14, 2005

Citation
Jianjun Ma, Wojtek Bock, Zhiyuan Wang, and Wenhui Hao, "Towards optimum sample-probe-spectrometer system design by adjusting receiving fiber end face position and probe-membrane sample separation," Opt. Express 13, 9492-9501 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9492


Sort:  Journal  |  Reset  

References

  1. J. Dakin and B. Culshaw, eds., Optical Fiber Sensors (Artech House Inc., 1997), Vol. 4, Ch. 7.
  2. <a href="http://www.oceanoptics.com/homepage.asp">http://www.oceanoptics.com/homepage.asp</a>.
  3. U. Utzinger and R. R. Richards-Kortum, �??Fiber optic probes for biomedical optical spectroscopy,�?? J. Bio. Opt. 8, 121-147 (2003). [CrossRef]
  4. R. A. Schwarz, D. Arifler, S. K. Change, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, �??Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,�?? Opt. Lett. 30, 1159-1161 (2005). [CrossRef] [PubMed]
  5. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, L. R. Jones, and L. Marcu, �??Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,�?? Appl. Opt. 43, 2846-2860 (2004). [CrossRef] [PubMed]
  6. R. L. McCreery, M. Fleischmann, and P. Hendra, �??Fiber Optic Probe for Remote Raman Spectrometry,�?? Anal. Chem. 55, 148-150 (1983). [CrossRef]
  7. C. Sluszny, V. V. Gridin, V. Bulatov, and I. Schechter, �??Polymer film sensor for sampling and remote analysis of polycyclic aromatic hydrocarbons in clear and turbid acqueous environments,�?? Anal. Chim. Acta 522, 145-152 (2004). [CrossRef]
  8. N. Ertas, E. U. Akkaya, and O. Y. Ataman, �??Simultaneous determination of cadmium and zinc using a fiber optic device and fluorescence spectrometry,�?? Talanta 51, 639-699 (2000). [CrossRef]
  9. C. Zhu, Q. Liu, and N. Ramanujam, �??Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: A Monte Carlo simulation,�?? J. Bio. Opt. 8, 237-247 (2003). [CrossRef]
  10. M. Johns, C. A. Giller, D. C. German, and H. Liu, �??Determination of reduced scattering coefficient of biological tissue from a needle-like probe,�?? Opt. Express 13, 4828-4842 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4828">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4828</a>. [CrossRef] [PubMed]
  11. J. Ma and W. J. Bock, �??Modeling of photonic crystal fiber with air holes sealed at the fiber end and its application to fluorescent light collection efficiency enhancement,�?? Opt. Express 13, 2385-2393 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2385">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2385</a>. [CrossRef] [PubMed]
  12. W. Demtröder, Laser Spectroscopy: Basic concepts and instrumentation (Springer-Verlag, second edition, 1996), Ch. 4.
  13. The Newport Oriel Light Resource (Newport Corp., 2004), Ch. 1.
  14. S. M. MacKinnon and Z. Y. Wang, �??Synthesis and characterization of poly(aryl ether imide)s containing electroactive perylene diimide and naphthalene diimide units,�?? J. Polym. Sci. Part A: Polym. Chem. 38, 3467-3475 (2000). [CrossRef]
  15. N. Takai and T. Asakura, �??Statistical properties of laser speckles produced under illumination from a multimode optical fiber,�?? J. Opt. Soc. Am. A. 2, 1282-1290 (1985). [CrossRef]
  16. G. Cancellieri and U. Ravaioli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House Inc., 1984), Ch. 1.
  17. D. Gloge, �??Optical power flow in multimode fibers,�?? Bell Syst. Tech. J. 51, 1767-1783 (1972).
  18. <a href="http://www.thorlabs.com">http://www.thorlabs.com</a>.
  19. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubí, �??Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,�?? IEEE J. Lightwave Technol. 20, 1160-1164 (2002). [CrossRef]
  20. G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited