OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9766–9773

High sensitivity of surface plasmon of weakly-distorted metallic surfaces

Wei-Chih Liu  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9766-9773 (2005)
http://dx.doi.org/10.1364/OPEX.13.009766


View Full Text Article

Acrobat PDF (2425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effects of nano-scale surface geometry on surface plasmon are studied by the coordinate-transformation differential method to numerically calculate surface plasmon modes on a weakly disordered metallic surface. An air-silver surface profile with a subwavelength period and a nano-scale height at wavelength of 650 nm are chosen and it is found that the Bloch wave numbers and the surface plasmon modes are highly sensitive with distortions of only a few nanometers for periods much less than wavelength. On the contrary, distortions of long periods which are comparable to wavelength have little impact. Three typical surface profiles exhibit surface plasmon modes of wide variations.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

History
Original Manuscript: October 20, 2005
Revised Manuscript: October 19, 2005
Published: November 28, 2005

Citation
Wei-Chih Liu, "High sensitivity of surface plasmon of weakly-distorted metallic surfaces," Opt. Express 13, 9766-9773 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9766


Sort:  Journal  |  Reset

References

  1. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of copper,” J. Mod. Opt. 42, 1639–1647 (1995).
  2. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt. 43, 81–91 (1996).
  3. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of zinc,” J. Mod. Opt. 45, 2585–2596 (1998).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  5. T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998). [CrossRef]
  6. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15,419–15,421 (1998). [CrossRef]
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  9. W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155,423 (2002).
  10. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045,421 (2004).
  11. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976). [CrossRef]
  12. E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
  13. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  14. N. P. Wanstall, T. W. Preist, W. C. Tan, M. B. Sobnack, and J. R. Sambles, “Standing-wave surface-plasmon resonances with overhanging zero-order metal gratings,” J. Opt. Soc. Am. A 15, 2869–2876 (1998).
  15. I. Hooper and J. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165,432 (2002).
  16. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount,” J. Opt. Soc. Am. A 20, 836–843 (2003).
  17. D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3652 "> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3652 </a> [CrossRef]
  18. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
  19. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Phys. (Paris) 11, 235–241 (1980).
  20. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
  21. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998). [CrossRef]
  22. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67, 35424 (2003). [CrossRef]
  23. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: GIF (645 KB)     
» Media 2: GIF (599 KB)     
» Media 3: GIF (682 KB)     
» Media 4: GIF (680 KB)     
» Media 5: GIF (614 KB)     
» Media 6: GIF (590 KB)     
» Media 7: GIF (564 KB)     
» Media 8: GIF (319 KB)     
» Media 9: GIF (234 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited