OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9890–9896

Self Pumped Optical Phase Conjugation at 1.06 μm in Te-doped Sn2P2S6

Tobias Bach, Mojca Jazbinšek, Peter Günter, Alexander A. Grabar, Ivan M. Stoika, and Yulian M. Vysochanskii  »View Author Affiliations


Optics Express, Vol. 13, Issue 24, pp. 9890-9896 (2005)
http://dx.doi.org/10.1364/OPEX.13.009890


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate self-pumped optical phase conjugation in Te-doped Sn2P2S6, a semiconducting ferroelectric crystal, using a 1.06 μm wavelength cw Nd:YAG laser. The photorefractive gain of this crystal has been increased to Γ = (3.9 ± 0.4)cm-1 by Te doping. We observed self-pumped optical phase conjugation in a ring cavity scheme with phase conjugate reflectivities of more than 40 percent and a very fast phase conjugate rise time below 100ms at a light intensity of 20 W/cm2. This is more than two orders of magnitude faster than in any other photorefractive crystal, as e.g. in Rh-doped BaTiO3.

© 2005 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5040) Nonlinear optics : Phase conjugation
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Research Papers

History
Original Manuscript: October 11, 2005
Revised Manuscript: October 11, 2005
Published: November 28, 2005

Citation
Tobias Bach, Mojca Jazbinšek, Peter Günter, Alexander Grabar, Ivan Stoika, and Yulian Vysochanskii, "Self Pumped Optical Phase Conjugation at 1.06 µm in Te-doped Sn2P2S6," Opt. Express 13, 9890-9896 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9890


Sort:  Journal  |  Reset  

References

  1. P. Günter, J.-P. Huignard, Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988). [CrossRef]
  2. A. E. Chiou, P. Yeh, ”Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461-463 (1986). [CrossRef] [PubMed]
  3. A. Brignon, J. P. Huignard, M. H. Garrett, I. Mnushkina, ”Spatial beam cleanup of a Nd:YAG laser operating at 1.06 µm with two-wave mixing in Rh:BaTiO3,” Appl. Opt. 36, 7788-7793 (1997). [CrossRef]
  4. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, G. Lucas-Leclin, P. Pauliat, G. Roosen, ”Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter,” Opt. Lett. 29, 989-991 (2004). [CrossRef] [PubMed]
  5. G. Roosen, A. Godard, S. Maerten, V. Reboud, N. Dubreuil, G. Pauliat, ”Self-organization of laser cavities using dynamic holograms,” Opt. Mater. 23, 289-293 (2003). [CrossRef]
  6. K. Tei, F. Matsuoka, M. Kato, Y. Maruyama, T. Arisawa, ”Nd:YAG oscillator-amplifier system with a passive ring self-pumped phase-conjugate mirror,” Opt. Lett. 25, 481-483 (2000). [CrossRef]
  7. S. MacCormack, J. Feinberg, ”High-brightness output from a laser-diode array coupled to a phase-conjugating mirror,” Opt. Lett. 18, 211-213 (1993). [CrossRef] [PubMed]
  8. M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, P. Günter, ”High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett. 22, 781-783 (1997). [CrossRef] [PubMed]
  9. G.W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, ”Impurity enhanced self-pumped phase conjugation in the near infrared in ’blue’ BaTiO3,” Opt. Commun. 101, 60-64 (1993). [CrossRef]
  10. N. Huot, J. M. C. Jonathan, G. Roosen, ”Characterization and optimization of a ring self-pumped phase-conjugate mirror at 1.06 µm with BaTiO3:Rh,” J. Opt. Soc. Am. B 15, 1992-1999 (1998). [CrossRef]
  11. R. S. Cudney, M. Kaczmarek, ”Optical poling in Rh:BaTiO3” in Trends in Optics and Photonics, Vol. 62, pp. 485-489 (2001).
  12. M. B. Klein, ”Photorefractive Properties of BaTiO3” in [1] pp.195-236.
  13. G. Roosen, S. Bernhardt, P. Delaye, ”Ba0.77Ca0.23TiO3: a new photorefractive material to replace BaTiO3 in applications,” Opt. Mater. 23, 243-251 (2003). [CrossRef]
  14. M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, Y. M. Vysochanskii, ”Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B 20, 1241-1246 (2003). [CrossRef]
  15. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, Y. M. Vysochanskii, ”Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459-2467 (2005). [CrossRef]
  16. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, ”Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752-754 (1996). [CrossRef] [PubMed]
  17. C. D. Carpentier, R. Nitsche, ”Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mat. Res. Bull. 9, 401-410 (1974). [CrossRef]
  18. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, Yu. M. Vysochanskii, ”Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187-194 (2001). [CrossRef]
  19. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, ”Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12-30 (1984). [CrossRef]
  20. A. A. Grabar, I. V. Kedyk, I. M. Stoika, Yu. M. Vysochanskii, M. Jazbinsek, G. Montemezzani, P. Günter ”Enhanced photorefractive properties of Te-doped Sn2P2S6,” in Trends in Optics and Photonics, Vol. 87, pp. 10-14 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited