OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10523–10538

Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable  »View Author Affiliations


Optics Express, Vol. 13, Issue 26, pp. 10523-10538 (2005)
http://dx.doi.org/10.1364/OPEX.13.010523


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high resolution, three-dimensional OCT imaging with a high speed, frequency swept 1300 nm laser source. A new external cavity semiconductor laser design, optimized for application to swept source OCT, is discussed. The design of the laser enables adjustment of an internal spectral filter to change the filter bandwidth and provides a robust bulk optics design. The laser generates ~30 mW instantaneous peak power at an effective 16 kHz sweep rate with a tuning range of ~133 nm full width. In frequency domain reflectometry and OCT applications, 109 dB sensitivity and ~10 μm axial resolution in tissue can be achieved with the swept laser. The high imaging speeds enable three-dimensional OCT imaging, including zone focusing or C-mode imaging and image fusion to acquire large depth of field data sets with high resolution. In addition, three-dimensional OCT data provides coherence gated en face images similar to optical coherence microscopy (OCM) and also enables the generation of images similar to confocal microscopy by summing signals in the axial direction. High speed, three-dimensional OCT imaging can provide comprehensive data which combines the advantages of optical coherence tomography and microscopy in a single system.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Research Papers

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Citation
R. Huber, M. Wojtkowski, James G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10523


Sort:  Journal  |  Reset  

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, and C.A. Puliafito, "High-Speed Optical Coherence Domain Reflectometry," Opt. Lett. 17, 151-153 (1992). [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  4. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  5. G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  6. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000). [CrossRef]
  7. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  8. S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  9. J. Zhang, W.G. Jung, J.S. Nelson, and Z.P. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004). [CrossRef] [PubMed]
  10. M.A. Choma, A.K. Ellerbee, C.H. Yang, T.L. Creazzo, and J.A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  11. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, and J.F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m," Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  12. F. Lexer, C.K. Hitzenberger, A.F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997). [CrossRef]
  13. B. Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997). [CrossRef]
  14. S.R. Chinn, E.A. Swanson, and J.G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  15. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513- 3528 (2005). [CrossRef] [PubMed]
  17. M.A. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300- nm ring laser source," J. Biomed. Opt. 10, #044009 (2005). [CrossRef] [PubMed]
  18. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003). [CrossRef] [PubMed]
  19. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  20. M.A. Choma, M.V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  22. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  23. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophtalm. 138, 412- 419 (2004). [CrossRef]
  24. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004). [CrossRef] [PubMed]
  25. M.V. Sarunic, M.A. Choma, C.H. Yang, and J.A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]
  26. S.H. Yun, C. Boudoux, G.J. Tearney, and B.E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  27. W.Y. Oh, S.H. Yun, G.J. Tearney, and B.E. Bouma, "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 17, 678-680 (2005). [CrossRef] [PubMed]
  28. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, and R.K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000). [CrossRef]
  29. S.T. Sanders, J. Wang, J.B. Jeffries, and R.K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001). [CrossRef]
  30. J. Wang, S.T. Sanders, J.B. Jeffries, and R.K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001). [CrossRef]
  31. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, and F. Winter, "1.8 mu m vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4," Meas. Sci. Technol. 14, 472-478 (2003). [CrossRef]
  32. A.A. Bol'shakov, B.A. Cruden, and S.P. Sharma, "Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption," Plasma Sci. Technol. 13, 691-700 (2004). [CrossRef]
  33. L.A. Kranendonk, R.J. Bartula, and S.T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005). [CrossRef] [PubMed]
  34. W. Eickhoff and R. Ulrich, "Optical Frequency-Domain Reflectometry in Single-Mode Fiber," Appl. Phys. Lett. 39, 693-695 (1981). [CrossRef]
  35. R. Passy, N. Gisin, J.P. Vonderweid, and H.H. Gilgen, "Experimental and Theoretical Investigations of Coherent Ofdr with Semiconductor-Laser Sources," J. Lightwave Technol. 12, 1622-1630 (1994). [CrossRef]
  36. U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides," J. Lightwave Technol. 11, 1377-1384 (1993). [CrossRef]
  37. H. Barfuss and E. Brinkmeyer, "Modified Optical Frequency-Domain Reflectometry with High Spatial- Resolution for Components of Integrated Optic Systems," J. Lightwave Technol. 7, 3-10 (1989). [CrossRef]
  38. F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A.F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).
  39. A. Divetia, T.H. Hsieh, J. Zhang, Z.P. Chen, M. Bachman, and G.P. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, #103902 (2005). [CrossRef]
  40. M.J. Cobb, X.M. Liu, and X.D. Li, "Continuous focus tracking for real-time optical coherence tomography," Opt. Lett. 30, 1680-1682 (2005). [CrossRef] [PubMed]
  41. B. Qi, A.P. Himmer, L.M. Gordon, X.D.V. Yang, L.D. Dickensheets, and I.A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004). [CrossRef]
  42. Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003). [CrossRef] [PubMed]
  43. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, "Imaging ex vivo healthy and pathological human brain tissue with ultrahigh- resolution optical coherence tomography," J. Biomed. Opt. 10, (2005). [CrossRef] [PubMed]
  44. Y.T. Pan, Z.G. Li, T.Q. Xie, and C.R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003). [CrossRef] [PubMed]
  45. Y. Zhang, J.T. Rha, R.S. Jonnal, and D.T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  46. J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  47. J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996). [CrossRef]
  48. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, and J.G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003). [CrossRef] [PubMed]
  49. S.L. Jiao, R. Knighton, X.R. Huang, G. Gregori, and C.A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). [CrossRef] [PubMed]
  50. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, and J.S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  51. P.I. Richter and T.W. Hänsch, "Diode-Lasers in External Cavities with Frequency-Shifted Feedback," Opt. Commun. 85, 414-418 (1991). [CrossRef]
  52. J.J. Snyder, "Paraxial Ray Analysis of a Cats-Eye Retroreflector," Appl. Opt. 14, 1825-1828 (1975). [CrossRef] [PubMed]
  53. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (5877 KB)     
» Media 2: MOV (2453 KB)     
» Media 3: MOV (1682 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited