OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 4 — Feb. 21, 2005
  • pp: 1334–1345

All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line

EunSeo Choi, Jihoon Na, Seon Young Ryu, Gopinath Mudhana, and Byeong Ha Lee  »View Author Affiliations


Optics Express, Vol. 13, Issue 4, pp. 1334-1345 (2005)
http://dx.doi.org/10.1364/OPEX.13.001334


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 µm and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

© 2005 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Research Papers

History
Original Manuscript: December 14, 2004
Revised Manuscript: December 14, 2004
Published: February 21, 2005

Citation
EunSeo Choi, Jihoon Na, Seon Ryu, Gopinath Mudhana, and Byeong Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1334


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. U.-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a> [CrossRef] [PubMed]
  3. C. Froehly, B. Colombeau, and M. Vampouille, in Progress In Optics v. 20, ed. E. Wolf (North Holland, Amstredam, 1983), pp. 63-153. [CrossRef]
  4. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992). [CrossRef] [PubMed]
  5. J. Ballif, R. Gianotti, Ph. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757-759 (1997). [CrossRef] [PubMed]
  6. C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: a new technique,” Opt. Lett. 22, 665-667 (1997). [CrossRef] [PubMed]
  7. A. M. Rollins, R. U.-Arunyawee, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., J. A. Izatt, “Realtime in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358-1360 (1999). [CrossRef]
  8. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Electron. Lett. 35, 1404-1406 (1999). [CrossRef]
  9. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological Images using optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996). [CrossRef] [PubMed]
  10. V. M. Gelikonov, A. M. Sergeev, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, “Compact Fast-Scanning OCT Device for In Vivo Biotissue Imaging,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1996), pp.58-59.
  11. B. H. Lee, T.-J. Eom, E. Choi, Y.-J. Kim, C. Lee, “All fiber delay line for OCT based on fiber gratings,” in Asian Symposium on Biomedical Optics and Photomedicine (BOPM 2002), TB2-1 (Optical Society of America, SPIE, Sapporo, 2002), pp.140-141.
  12. B. H. Lee, T.-J. Eom, E. Choi, G. Mudhana, C. Lee, “Novel Optical Delay Line for Optical Coherence Tomography System,” Opt. Rev. 10, 572-575 (2003). [CrossRef]
  13. C. Yang, S. Yazdanfar, and J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29, 685-687 (2004). [CrossRef] [PubMed]
  14. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  15. R. Kashyap, Fiber Bragg gratings (Academic Press, New York, 1999), pp.311-354. [CrossRef]
  16. Y. Pan, J. Welzel, R. Bringruber, and R. Engelhardt, “Optical coherence-gated imaging of biomedical tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029-1034 (1996). [CrossRef]
  17. P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” App. Opt. 2, 640-648 (2003). [CrossRef]
  18. W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” in Distributed and Multiplexed Fiber optic Sensors, Donald C. O'Shea, ed., Proc. SPIE 1586, 216-224 (1991).
  19. T. Imai, T. Komukai, and M. Nakazawa, “Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient,” IEEE Photon. Technol. Lett. 10, 845–847 (1998). [CrossRef]
  20. J. Kim, J. Bae, Y.-G. Han, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings Without Central Wavelength Shift,” IEEE Photon. Technol. Lett. 16, 849–851 (2004). [CrossRef]
  21. M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, and S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC (2003).
  22. P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, “Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction,” Opt. Express 12, 2676- 2687 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2676">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2676</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited