OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 6 — Mar. 21, 2005
  • pp: 1892–1899

XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer

H. Sun, Q. Wang, H. Dong, and N. K. Dutta  »View Author Affiliations

Optics Express, Vol. 13, Issue 6, pp. 1892-1899 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of all-optical XOR gate based on quantum-dot (QD) SOA MZI has been simulated. The saturation power, optical gain and phase response of a QD SOA has been analyzed numerically using a rate equation model of quantum dots embedded in a wetting layer. The calculated response is used to model the XOR performance. For the parameters used here, XOR operation at ~250 Gb/s is feasible using QD based Mach-Zehnder interferometers. The speed is limited by the relaxation time from wetting layer to the quantum dots.

© 2005 Optical Society of America

OCIS Codes
(200.4660) Optics in computing : Optical logic
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Research Papers

Original Manuscript: January 25, 2005
Revised Manuscript: February 24, 2005
Published: March 21, 2005

H. Sun, Q. Wang, H. Dong, and N. Dutta, "XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer," Opt. Express 13, 1892-1899 (2005)

Sort:  Journal  |  Reset  


  1. K. L. Hall and K. A. Rauschenbach, �??All-optical bit pattern generation and matching,�?? Electron. Lett. 32, 1214-1215 (1996). [CrossRef]
  2. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, �??All-optical pseudorandom number generator,�?? Opt. Commun. 159, 208-214 (1999). [CrossRef]
  3. T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, �??Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,�?? IEEE Photon. Technol. Lett. 13, 750-752 (2001). [CrossRef]
  4. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, �??Interferometric all-optical switches for ultrafast signal processing,�?? Appl. Opt. 37, 2831-2842 (1998). [CrossRef]
  5. M. Jinno, and T. Matsumoto, �??Ultrafast all-optical logic operations in a nonlinear sagnac interferometer with two control beams,�?? Opt. Lett. 16, 220-222 (1991). [CrossRef] [PubMed]
  6. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard and R. Dall�??Ara, �??10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,�?? Electron. Lett. 35, 1650-1652 (1999). [CrossRef]
  7. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall�??Ara, �??20 Gb/s all-optical XOR with UNI gate,�?? IEEE Photon. Technol. Lett. 12, 834-836 (2000). [CrossRef]
  8. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, �??Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,�?? Electron. Lett. 36 (22), 1863-1864 (2000). [CrossRef]
  9. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, �??Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,�?? IEEE J. Quantum Electron., Vol.40, pp.703-710,2004. [CrossRef]
  10. G. Agrawal and N. Olsson, �??Self-Phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 25-11, 2297-2306 (1989). [CrossRef]
  11. H.Chen, G.Zhu, J.Jaques, J.Leuthold, A.B.Piccirilli, and N.K.Dutta, �??All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,�?? Electron. Lett. 38, 1271-1273 (2002). [CrossRef]
  12. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, �??Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,�?? Phys. Rev. B 69, 235332-1-39 (2004). [CrossRef]
  13. J. Mark and J. Mørk, �??Subpicosecond gain dynamics in InGaAsP optical amplifiers; Experiment and theory,�?? Appl. Phys. Lett. 61, 2281-2283 (1992). [CrossRef]
  14. A. Mecozzi and J. Mørk, �??Saturation effect in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifier,�?? IEEE J. Sel. Top. Quantum Electron. 3-5, 1190-1207 (1997).
  15. J. M. Tang and K. A. Shore,"Characteristic of Optical Phase Conjugation of Picosecond Pulses in Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 35-7, 1032-1040 (1999). [CrossRef]
  16. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, �??Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160Gbs-1 and a new scheme of 3R regenerators,�?? Meas. Sci. Technol. 13, 1683-1691 (2002). [CrossRef]
  17. A. Sakamoto and M. Sugawara �??Theoretical calculation of lasing spectra of quantum-dot lasers: Effect of homogeneous broadening of optical gain,�?? IEEE Photon. Technol. Lett. 12-2, (2000).
  18. R. Gutierrez-Castrejon, L. Occhi, L. Schares, and G. Guekos, �??Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing,�?? Opt. Commun. 195, 167-177 (2001). [CrossRef]
  19. G. P. Agrawal, Fiber Optic Communication systems, (John Wiley, 1997) Section 4.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited