OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3477–3490

Design of solid and microstructure fibers for suppression of higher-order modes

John M. Fini  »View Author Affiliations


Optics Express, Vol. 13, Issue 9, pp. 3477-3490 (2005)
http://dx.doi.org/10.1364/OPEX.13.003477


View Full Text Article

Enhanced HTML    Acrobat PDF (2930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hole-assisted fibers have been proposed for a number of applications, including low-bend-loss access transmission. Suppression of higher-order modes is essential in these designs, and is explained here as the result of index-matched coupling between core and cladding modes. This physical principle is shown to explain previous empirically optimized designs, and enables intuitive generalizations. The improved tradeoff between bend loss and suppression of higher-order modes in these designs is discussed. Novel solid and microstructure fiber designs with suppressed higher-order modes illustrate these principles.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: March 8, 2005
Revised Manuscript: April 22, 2005
Published: May 2, 2005

Citation
John Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477


Sort:  Journal  |  Reset  

References

  1. T. A. Birks, P. J. Roberts, et al. �??Full 2d photonic bandgaps in silica/air structures,�?? Electron. Lett. 31, 1941 (1995). [CrossRef]
  2. S. A. Diddams, D. J. Jones, et al. �??Direct link between microwave and optical frequencies with a 300THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102 (2000). [CrossRef] [PubMed]
  3. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel. �??Low loss (1.7db/km) hollow core photonic bandgap fiber,�?? In Optical Fiber Communications Conference (OFC), PDP24 (2004).
  4. S. G. Johnson, M. Ibanescu, et al. �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748 (2001). [CrossRef] [PubMed]
  5. T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya. Bend-insensitive single-mode holey fibre with SMF compatibility for optical wiring applications. In European Conference on Optical Communications, page We2.7.3 (2003).
  6. K. Nakajima, K. Hogari, et al. �??Hole assisted fiber design for small bending and splice losses,�?? Photon. Technol. Lett. 15, 1737 (2003) [CrossRef]
  7. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba. �??Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,�?? Opt. Express 9, 681 (2001). [CrossRef] [PubMed]
  8. M. Yan, P. Shum, and C. Lu. �??Hole-assisted multiring fiber with low dispersion around 1550 nm,�?? Photon. Technol. Lett. 16, 123 (2004). [CrossRef]
  9. F. Gerome, J. L. Auguste, and J. M. Blondy. �??Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,�?? Opt. Lett. 29, 2725 (2004). [CrossRef] [PubMed]
  10. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and H. R. Simonsen. �??Improved large-mode-area endlessly single-mode photonic crystal fibers,�?? Opt. Lett. 28, 393 (2003). [CrossRef] [PubMed]
  11. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni. �??Predicting macrobending loss for large-mode area photonic crystal fibers,�?? Opt. Express 11, 2762 (2004). [CrossRef]
  12. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tnnermann, J. Broeng, A. Petersson, and C. Jakobsen. �??Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,�?? Opt. Express 12, 1313�??1319 (2004). [CrossRef] [PubMed]
  13. F. Gerome, J. L. Auguste, and J. M. Blondy. �??Very high negative chromatic dispersion in a dual concentric core photonic crystal fiber,�?? In Optical Fiber Communications Conference (OFC), WA2 (2004).
  14. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. deSterke. �??Calculations of air-guiding modes in photonic crystal fibers using the multipole method,�?? Opt. Express 9, 721 (2001). [CrossRef] [PubMed]
  15. P. Yeh, A. Yariv, and E. Marom. �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196 (1978). [CrossRef]
  16. A. D. Yablon and Ryan Bise. �??Low-loss high-strength microstructure fiber fusion splices using grin fiber lenses,�?? In Optical Fiber Communications Conference (OFC), MF14 (2004).
  17. J. K. Chandalia, B. J. Eggleton, R. S.Windeler, S. G. Kosinski, X. Liu, and C. Xu. �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? Photon. Technol. Lett. 13, 52 (2001). [CrossRef]
  18. J. C. Knight, T. A. Birks, P. S. J. Russell, and J. P. de Sandro. �??Properties of photonic crystal fiber and the effective index model,�?? J. Opt. Soc. Am. A 15, 748 (1998). [CrossRef]
  19. T. M. Monro, D. J. Richardson, et al. �??Holey optical fibers: an efficient modal model,�?? J. Lightwave Technol. 17, 1093 (1999). [CrossRef]
  20. B. T. Kuhlmey, R. C. McPhedran, and C. M. deSterke. �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684 (2002). [CrossRef]
  21. J. M. Fini. �??Bloch theory describing cladding modes of microstructure optical fiber,�?? In European Conference on Optical Communications, We4.P.37, (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited