OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4208–4220

Manipulation of the Pancharatnam phase in vectorial vortices

Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman  »View Author Affiliations


Optics Express, Vol. 14, Issue 10, pp. 4208-4220 (2006)
http://dx.doi.org/10.1364/OE.14.004208


View Full Text Article

Enhanced HTML    Acrobat PDF (3723 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Linearly polarized vectorial vortices are analyzed according to their Pancharatnam phase and experimentally demonstrated using a geometric phase element consisting of space-variant subwavelength gratings. It is shown that in the absence of a Pancharatnam phase, stable vectorial vortices that have no angular momentum arise. In contrast, if a Pancharatnam phase is present the vectorial vortices have orbital angular momentum and collapse upon propagation.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 3, 2006
Revised Manuscript: May 2, 2006
Manuscript Accepted: May 2, 2006
Published: May 15, 2006

Citation
Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman, "Manipulation of the Pancharatnam phase in vectorial vortices," Opt. Express 14, 4208-4220 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin, M.V. Vasnetsov, "Singular optics," in Progress in Optics, Vol.42, E. Wolf ed. (Elsevier, Netherlands, Amsterdam, 2001), pp. 219-276.
  2. D. Palacios, D. Rozas, and G. A. SwartzlanderJr., "Observed scattering into a dark optical vortex core," Phys. Rev. Lett. 88, 103902 1-4 (2002). [CrossRef]
  3. J.F. Nye, "Polarization effect in the diffraction of electromagnetic waves: the role of disclinations," Proc. R. Soc. Lond. A 387, 105-132 (1983). [CrossRef]
  4. J. F. Nye, "Lines of circular polarization in electromagnetic wave fields," Proc. R. Soc. London Ser. A 389, 279-290 (1983). [CrossRef]
  5. J. V. Hajnal, "Singularities in the transverse fields of electromagnetic waves," Proc. R. Soc. Lond. A 414, 433-446 and 447-468 (1987). [CrossRef]
  6. I. Freund, "Polarization singularity indices in Gaussian laser beams," Opt. Commun. 201, 251-270 (2002). [CrossRef]
  7. M. R. Dennis, "Polarization singularities in paraxial vector fields: morphology and statistics," Opt. Commun. 213, 201-221 (2002). [CrossRef]
  8. P. Pääkkönen, J. Tervo, P. Vahimaa, J. Turunen, and F. Gori, "General vectorial decomposition of electromagnetic fields with application to propagation-invariant and rotating fields," Opt. Express 10, 949-959 (2002). [PubMed]
  9. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements," Opt. Lett. 29, 238-240 (2004). [CrossRef] [PubMed]
  10. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Rotating vectorial vortices produced by space-variant subwavelength gratings," Opt. Lett. 30, 2933-2935, (2005). [CrossRef] [PubMed]
  11. D. Mawet, P. Riaud, O. Absil, and J. Surdej, "Annular groove phase mask coronagraph," Astro. Phys. 633, 1191-1200 (2005). [CrossRef]
  12. 12. Y. Liu, D. Cline, and P. He, "Vacuum laser acceleration using a radially polarized CO2 laser beam," Nucl. Instrum. Meth. Phys Res. A 424, 296-303 (1999);W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995). [CrossRef]
  13. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  14. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  15. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000). [CrossRef]
  16. K. C. ToussaintJr., S. Park, J. E. Jureller, and N. F. Scherer, "Generation of optical vector beams with a diffractive optical element interferometer," Opt. Lett. 30, 2846-2848 (2005). [CrossRef] [PubMed]
  17. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings," Opt. Lett. 28,510-512 (2003). [CrossRef] [PubMed]
  18. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings," Opt. Lett. 27, 1141-1143 (2002). [CrossRef]
  19. Q. Zhan and J. R. Leger, "Interferometric measurement of the geometric phase in space-variant polarization manipulations," Opt. Commun. 213, 241-245 (2002). [CrossRef]
  20. E. Hasman, G. Biener, A. Niv, and V. Kleiner, "Space-variant polarization manipulation," in Progress in Optics, vol.47, E. Wolf ed. (Elsevier, Netherlands, Amsterdam, 2005), pp. 215-289.
  21. L. Allen, M.J. Padgett, and M. Babiker, in Progress in Optics, vol.39, E. Wolf ed. (Elsevier, Netherlands, Amsterdam, 1999), pp. 291-372.
  22. M. Born and E. Wolf, Principles of Optics, seventh ed. (Cambridge University Press, Cambridge, UK, 1999), Section 15.5.2.
  23. R. C. Enger and S.K. Case, "Optical elements with ultrahigh spatial-frequency surface corrugations," Appl. Opt. 223220-3228 (1983). [CrossRef] [PubMed]
  24. L. H. Cescato, E. Gluch, and N. Streibl, "Holographic quarterwave plates," Appl. Opt. 293286-3290 (1990). [CrossRef] [PubMed]
  25. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Spiral phase elements obtained by use of discrete space-variant subwavelength gratings," Opt. Commun. 251, 306-314 (2005). [CrossRef]
  26. S. Pancharatnam, "Generalized theory of interference and its applications. Part I. Coherent pencils," Proc. Ind. Acad. Sci. A 44 (1956) 247 [reprinted in S. Pancharatnam, Collected Works (Oxford University Press, 1975)].
  27. 27. P. K. Aravind, "A simple proof of Pancharatnam's theorem," Opt. Commun. 94, 191-196 (1992);C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998). [CrossRef]
  28. E. Collett, Polarized Light (Marcel Dekker, New York, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited