OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4250–4255

Optical delay interferometer based on phase shifted fiber Bragg grating with optically controllable phase shifter

Tae-Young Kim, Masanori Hanawa, Sun-Jong Kim, Swook Hann, Yune Hyoun Kim, Won-Taek Han, and Chang-Soo Park  »View Author Affiliations

Optics Express, Vol. 14, Issue 10, pp. 4250-4255 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel optical delay interferometer (ODI) with an optically controllable phase shifter. The proposed interferometer is implemented by using a phase shifted fiber Bragg grating and an Yb3+/Al3+ co-doped optical fiber. The phase of the delayed optical signal is linearly controlled by adjusting the induced pumping power of a laser diode at 976 nm. Polarization dependent loss, polarization dependent center wavelength shift and temperature induced center wavelength shift of the ODI are 0.044 dB, 6 pm, and 9.8 pm/°C, respectively.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 16, 2005
Revised Manuscript: April 25, 2006
Manuscript Accepted: April 30, 2006
Published: May 15, 2006

Tae-Young Kim, Masanori Hanawa, Sun-Jong Kim, Swook Hann, Yune Hyoun Kim, Won-Taek Han, and Chang-Soo Park, "Optical delay interferometer based on phase shifted fiber Bragg grating with optically controllable phase shifter," Opt. Express 14, 4250-4255 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005). [CrossRef]
  2. D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983). [CrossRef]
  3. E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994). [CrossRef]
  4. M. Hanawa, T. Fujimoto, and K. Nakamura, "Simple clock extraction method from NRZ signals by π-phase shifted fiber Bragg gratings," OECC 2005, Tech. Dig. 8D2-5, 820-821, (2005).
  5. J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996). [CrossRef]
  6. P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996). [CrossRef]
  7. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997). [CrossRef]
  8. Y. H. Kim, N. S. Kim, Y. Chung, U. Paek, and W.-T. Han, "All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair," Opt. Express 12,651-656 (2004), [CrossRef] [PubMed]
  9. Y. H. Kim, U. Paek, and W.-T. Han, "All-optical 2 × 2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44, 3051-3057 (2005). [CrossRef] [PubMed]
  10. M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997). [CrossRef]
  11. Y. Lai, W. Zhang, L. Zhang, J. Williams, and I. Bennion, "Optically tunable fiber grating transmission filters, " Opt. Lett. 28, 2446-2448 (2003). [CrossRef] [PubMed]
  12. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, "Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair," Opt. Lett. 27, 580-582 (2002). [CrossRef]
  13. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013-1023 (1998). [CrossRef]
  14. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited