OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4552–4569

Adaptive optics flood-illumination camera for high speed retinal imaging

Jungtae Rha, Ravi S. Jonnal, Karen E. Thorn, Junle Qu, Yan Zhang, and Donald T. Miller  »View Author Affiliations

Optics Express, Vol. 14, Issue 10, pp. 4552-4569 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current adaptive optics flood-illumination retina cameras operate at low frame rates, acquiring retinal images below seven Hz, which restricts their research and clinical utility. Here we investigate a novel bench top flood-illumination camera that achieves significantly higher frame rates using strobing fiber-coupled superluminescent and laser diodes in conjunction with a scientific-grade CCD. Source strength was sufficient to obviate frame averaging, even for exposures as short as 1/3 msec. Continuous frame rates of 10, 30, and 60 Hz were achieved for imaging 1.8, 0.8, and 0.4 deg retinal patches, respectively. Short-burst imaging up to 500 Hz was also achieved by temporarily storing sequences of images on the CCD. High frame rates, short exposure durations (1 msec), and correction of the most significant aberrations of the eye were found necessary for individuating retinal blood cells and directly measuring cellular flow in capillaries. Cone videos of dark adapted eyes showed a surprisingly rapid fluctuation (~1 Hz) in the reflectance of single cones. As further demonstration of the value of the camera, we evaluated the tradeoff between exposure duration and image blur associated with retina motion.

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(110.0180) Imaging systems : Microscopy
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: February 21, 2006
Revised Manuscript: April 28, 2006
Manuscript Accepted: May 4, 2006
Published: May 15, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Jungtae Rha, Ravi S. Jonnal, Karen E. Thorn, Junle Qu, Yan Zhang, and Donald T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
  2. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  3. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001). [CrossRef] [PubMed]
  4. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, "Small table-top adaptive optical systems for human retinal imaging", in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, R. K. Tyson, eds., Proc. SPIE 4825, 99-108 (2002). [CrossRef]
  5. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002. [CrossRef]
  6. D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002). [CrossRef] [PubMed]
  7. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004). [CrossRef]
  8. P. Fournier, G. R. G. Erry, L. J. Otten, A. Larichev, N. Irochnikov, "Next generation high resolution adaptive optics fundus imager," in 5th International Workshop on Adaptive Optics for Industry and Medicine, edited by Wenhan Jiang, Proceedings of SPIE Vol. 6018 (SPIE, Bellingham, WA, 2005).
  9. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989). [CrossRef] [PubMed]
  10. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  11. D. T. Miller, J. Qu, R. S. Jonnal and K. Thorn, "Coherence gating and adaptive optics in the eye," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  12. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  13. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  14. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  15. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  16. L. A. Riggs and J. C. Armington, J.C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. 44, 315-321 (1954). [CrossRef] [PubMed]
  17. I. Iglesias and P. Artal, "High-resolution retinal images obtained by deconvolution from wave-front sensing," Opt. Lett. 25, 1804-1806 (2000). [CrossRef]
  18. K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, "Adaptive optics flood-illuminated camera for high speed retinal imaging," Invest. Ophthalmol. Visual Sci. 44, E-Abstract 1002 (2003).
  19. J. Rha, R. S. Jonnal, Y. Zhang, and D. T. Miller, "Rapid fluctuation in the reflectance of single cones and its dependence on photopigment bleaching," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 3546 (2005).
  20. K. E. Thorn, R. S. Jonnal, J. Qu, and D. T. Miller, "High-speed imaging of the retinal microvasculature with adaptive optics," Society of Photo-Optical Instrumentation Engineers' 2004 International Symposium on Ophthalmic Technologies XIV, San Jose, CA, January 24-25, 2004.
  21. J. Rha, R. S. Jonnal, Y. Zhang and D. T. Miller, "Video rate imaging with a conventional flood illuminated adaptive optics retin,a camera," 88th Optical Society of America Annual Meeting, Rochester, New York, October 10-14, 2004.
  22. ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).
  23. B. Crosignani, B. Diano, and P. Di Porto, "Speckle-pattern visibility of light transmitted through a multimode optical fiber," J. Opt. Soc. Am. 66, 1312-1313 (1976). [CrossRef]
  24. B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992). [CrossRef]
  25. E. G. Rawson, J. W. Goodman, R. E. Norton, "Frequency dependence of modal noise in multimode optical fibers," J. Opt. Soc. Am. 70, 968-976 (1980). [CrossRef]
  26. F. M. MimsIII, A Practical Introduction to Lightwave Communications (Howard W. Sams & Co., Indiana, 1982).
  27. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004). [PubMed]
  28. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Indiana University AO-OCT system," in Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, J. Porter, et al., eds. (John Wiley & Sons, New Jersey, In Press).
  29. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  30. D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454, 1988. [CrossRef] [PubMed]
  31. A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994). [CrossRef] [PubMed]
  32. M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).
  33. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef] [PubMed]
  34. A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).
  35. A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003). [CrossRef]
  36. H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995). [PubMed]
  37. J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1173 KB)     
» Media 2: AVI (1485 KB)     
» Media 3: AVI (1116 KB)     
» Media 4: AVI (2545 KB)     
» Media 5: AVI (1074 KB)     
» Media 6: AVI (534 KB)     
» Media 7: AVI (527 KB)     
» Media 8: AVI (2321 KB)     
» Media 9: AVI (2313 KB)     
» Media 10: AVI (512 KB)     
» Media 11: AVI (2371 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited